(1.) Let $f: A \rightarrow B$ be a ring homomorphism. Let Ideal (A) and Ideal (B) be the set of ideals of A and B, resp.

Then as we discussed in class

$$
\begin{aligned}
& \text { Ideal }(B) \xrightarrow{c} \text { Ideal (A), } b \longmapsto b^{c}:=f^{-1}(b) \\
& \text { (contraction) } \\
& \xrightarrow{\text { Ideal }}(A) \xrightarrow{e} \text { Ideal }(B), \quad \Omega \longmapsto \sigma^{e}:=\langle f(\pi)\rangle \\
& \text { (extension) }
\end{aligned}
$$

are two functions. Prove that

$$
\pi^{e c e}=\pi^{e} \text { and } b^{c e c}=b^{c}
$$

And deduce that the extension and the contraction maps induce bijections between $\operatorname{Im}(e)$ and $\operatorname{Im}(c)$.

2 Suppose $a, k \triangleleft A$. Let $(\pi:-\infty):=\{x \in A \mid x \neq \pi\}$.
(a) Prove that ($\sigma: \neq) \triangleleft A$ and $a \subseteq(\sigma: \infty)$
(b) $(\pi: b) b \subseteq \pi, \quad(c)((\pi: b): c)=(\pi: b c)=((a: c): b)$
(a) $\left(\bigcap_{i} a_{i}: b\right)=\bigcap_{i}\left(a_{i}: b\right) \quad$ (e) $\left(a_{i} \sum_{i} b_{i}\right)=\cap\left(a_{:} b_{i}\right)$.
(3) Recall that $\sqrt{\pi}:=\left\{x \in A \mid x^{n} \in \pi\right.$ for some $\left.n \in \mathbb{Z}^{+}\right\}$.
(a) Prove that $\sqrt{\sigma}=\bigcap_{W \in V(\sigma)}$ 中

Homework 1
(b) Prove that π and $t \infty$ are caprine if and only if $\sqrt{\pi}$ and $\sqrt{\infty}$ are coprime.

14] (a) Prove that $\operatorname{Ni}(A[x])=\operatorname{Nil}(A)[x]$.

$$
n \in \mathbb{Z}^{20}
$$

(b) Prove that $U(A[x])=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{0} \in U(A) \quad\right\}$. $a_{1}, \ldots, a_{n} \in \operatorname{Nil}(A)$
(c) Prove that $J(A[x])=\operatorname{Nil}(A)[x]$.
(Here $A[x]$ is the ring of polynomials over A with indeterminant x.)
[5] (a) Prove that $\{\phi\}$ is closed in $\operatorname{spec}(A) \Longleftrightarrow q \in \operatorname{Max}(A)$.
(b) Prove that the closure $\overline{\{\propto\}}$ of $\{ゅ\}$ in $\operatorname{spec}(A)$ is $V(\not p)$ for any $x \in \operatorname{Spec}(A)$.

6] Let $X=\operatorname{spec}(A)$ and, for $f \in A$, let $X_{f}:=X \backslash V(\langle f\rangle)$.
(a) Prove that $X_{f}=X_{f^{\prime}} \Leftrightarrow \sqrt{\langle f\rangle}=\sqrt{\left\langle f^{\prime}\right\rangle}$.
(b) Prove that there is a bijection between X_{f} and $\operatorname{spec}\left(A_{f}\right)$ where $A_{f}:=S_{f}^{-1} A$ and $S_{f}=\left\{1, f, f^{2}, \ldots\right\}$. (We consider spec. of the o ring to be \varnothing.) (c) Prove that $\left\{X_{f}\right\}_{f \in A}$ is a basis of open sets of X.

Homework 1
(d) Prove that X is quasi-compact; that means every open covering of x has a finite sub-cover.
(7) Suppose $\pi, b_{1}, \ldots, b_{n} \triangleleft A, \quad \pi \subseteq \bigcup_{i=1}^{n} b_{i}$, and
$a \notin \bigcup_{i=1}^{n} b_{i}$ for any $1 \leq j \leq n$. Prove that for some $k \in \mathbb{Z}^{+}$ $i \neq j$

$$
a^{k} \subseteq \bigcap_{i=1}^{n} b_{i}
$$

Hint. . $\pi \subseteq b_{1} \cup b_{2} \Rightarrow \pi \subseteq b_{i}$ for some i.

- $a \subseteq\left(b_{1}+b_{2}\right) \cup b_{3} \cup \cdots \cup b_{n}$; by induction deduce

$$
\begin{equation*}
\pi^{k} \subseteq \prod_{i<j}\left(b_{i}+b_{j}\right) \tag{I}
\end{equation*}
$$

- Show that $b_{1} \cap \cdots \cap b_{n-1}=b_{1} \cap \ldots \cap b_{n}$ (II)
(I), (II) imply $\pi^{k} \subseteq b_{1} \cap \cdots \cap b_{n}$.)

