Homework 2
Friday, April 13, 2018

1. (a) Suppose $\forall p \in \operatorname{Spec}(A), \operatorname{Nil}\left(A_{\phi}\right)=0$. Prove that $\operatorname{Nil}(A)=0$.
(Hint. Suppose $x \in N i l(A) \backslash\{0\}$. Consider $(0: x)$).
(b) Suppose B is a boolean ring; that means $a^{2}=a \quad \forall a \in B$.
(b-1) Prove that $\operatorname{spec}(B)=\operatorname{Max}(B)$ and $\forall p \in \operatorname{Spec}(B), B / p \simeq \mathbb{Z} / 2 \mathbb{Z}$
(b-2) Prove that, $\forall q \in \operatorname{Spec}(B), B_{\phi p} \simeq \mathbb{Z} / 2 \mathbb{Z}$
(Hint. If $a \in \notin$, then $1-a \notin \phi$ and $\frac{a}{1}=\frac{a(1-a)}{1-a}=0$.) (b-3) Let $B=P(X)$ be the power set of X; and let $b_{1}+b_{2}:=b_{1} \Delta b_{2}$ be the symmetric difference and $b_{1} \cdot b_{2}:=b_{1} \cap b_{2}$. Convince yourself that $(B,+, \cdot)$ is a boolean ing. Prove that B is Noetherian if and only if $|x|<\infty$.
(c) Suppose, $\forall i p \in \operatorname{Spec}(A), A_{\chi p}$ is an integral domain; Is A necessarily an integral domain?
(d) Suppose, $\forall y \in \operatorname{Spec}(A), A_{p p}$ is Noetherian; Is A necessarily Noetherian?

Homework 2
Friday, April 13, $2018 \quad$ 2:50 PM
2. Let B be a flat A-algebra. Then the following statements are equivalent:
(i) $\pi^{e c}=\pi$ for any $\pi \nabla A$.
(ii) $\operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ is surjective.
(iii) \forall th r $\in \operatorname{Max}(A), \pi r^{e} \neq B$.
(iv) If M is any non-zero A-module, then $M \otimes_{A} B \neq 0$.
(v) For every A-module $M, M \longrightarrow M \otimes_{A} B$ is infective.

$$
x \longmapsto x \otimes 1
$$

(Hint. (i) \Rightarrow (ii) ; we proved $q \in \operatorname{lm} f^{*} \Leftrightarrow \phi=\phi^{e c}$;
(ii) \Rightarrow (iii); is clear;
$(i i i) \Rightarrow($ iv); For any $x \in M, \quad 0 \rightarrow A x \rightarrow M$ is exact
Since B is a flat A-module, $0 \rightarrow A x \otimes_{A} B \rightarrow M \otimes_{A} B$ is exact. So it is enough to show $A x \otimes B \neq 0$. Notice $A x \simeq A / \sigma$ and $A / \pi \otimes_{A} B \simeq B / \sigma^{e}$.
(iv) $\Rightarrow(V)$; Suppose $\quad M^{\prime}=\operatorname{ker}\left(M \rightarrow M \otimes_{A} B\right)$. Since B is a flat A - $\bmod , \quad 0 \rightarrow M_{A}^{\prime} B \rightarrow M \otimes_{A} B \rightarrow\left(M \otimes_{A} B\right) \otimes_{A} B$ is exact. Let $g:\left(M_{A} B\right) \otimes_{A} B M_{A} B, g(x \otimes b):=x b$. Show that g is a well-defind $B^{B-\text { mod }} B$-mod. ham, and $g \circ f=$ id. And so f is infective.
$(v) \Rightarrow(i)$ Show $\left.A / r \longrightarrow B / r^{e}\right)$ $(v) \Rightarrow$ (i) Show $A / \pi \subset B / \pi^{e}$.)
We say B is faithfully flat over A if these properties hold.

Homework 2
Friday, April 13, 2018 3:28 PM
3.(a) Let $A=k[x, y, z] /\left\langle x y-z^{2}\right\rangle$, $中:=\langle\bar{x}, \bar{z}\rangle$. Prove that $\psi \in \operatorname{Spec}(A)$ and ψ^{2} is NOT primary.
(b) Let $\phi=\left\langle x, y^{2}\right\rangle \triangleleft k[x, y]$. Prove $\sqrt{q}=\underbrace{\langle x, y\rangle}_{\text {Nf }} \in \operatorname{Max}(k[x, y])$; Deduce that ϕ is π-primary. Show $\phi \neq \pi^{n}(\forall n \in \mathbb{Z})$.
(c) Let $\sigma=\left\langle x^{2}, x y\right\rangle \triangleleft k[x, y]$. Find two reduced primary decompositions for π.
(In this problem, k is a field; x, y, z are indeterminants.)
4. For $\pi \triangleleft A$, let $\pi[x]=\left\{\sum_{i=0}^{m} a_{i} x^{i} \left\lvert\, \begin{array}{c}\left.a_{i} \in \sigma\right\} \mathbb{Z}^{20} \\ m\end{array}\right.\right.$. Consider $A \hookrightarrow A[x]$.
(a) Convince yourself that $\sigma^{e}=\pi[x]$. Show that
$\operatorname{spec}(A) \xrightarrow{e} \operatorname{spec}(A[x])$ is a cwell-defined injection.
(b) Prove that, if q is a p-primary ideal of A, then q^{e} is a $p^{e}-p r i m a r y ~ i d e a l ~ o f ~ A[x] . ~$
(d) Prove that $0 \subseteq\left\langle x_{1}\right\rangle \subseteq\left\langle x_{1}, x_{2}\right\rangle \subseteq \ldots \subseteq\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a chain of prime ideals of $k\left[x_{1}, \ldots, x_{n}\right]$ and $\left\langle x_{1}, \ldots, x_{r}\right\rangle^{s}$ is $\left\langle x_{1}, \ldots, x_{r}\right\rangle$-primary. (k :field and $x_{i}^{\prime \prime s}$ are indeter.)

Homework 2
Friday, April 13, 2018
5. Suppose $\psi \in \operatorname{spec}(A)$. Consider $A \rightarrow A_{\psi}$; and let $\psi^{(n)}:=\left(\phi^{n}\right)^{\text {ec }}$.
(i) Prove that $p^{(n)}$ is p-primary.
(ii) Prove that, if ϕ^{n} is de composable, then ϕ is the smallest element of $\operatorname{Ass}\left(p^{n}\right)^{n}$; and $\psi^{(n)}$ is its q-factor.

In particular, ϕ^{n} is primary if and only if $\phi^{n}=\phi^{(n)}$.

