Homework 2

Friday, April 13, 2018 2:22 PM

1. (a) Suppose Yxp & Spec (A), Nil(Ap)=0. Prove that Nil(A)=0.

(Hint. Suppose XENIKA) \ 208. Consider (0:x).)

(b) Suppose B is a boolean ring; that means $\alpha^2 = \alpha \quad \forall \alpha \in \mathbb{B}$.

(b-1) Prove that Spec(B)=Max (B) and Yxp∈Spec(B), B/xp ~ Z/2Z

(b-2) Prove that, Y p ∈ Spec (B), Bp ~ Z/2Z

(Hint. If a exp, then $1-a \notin \text{sp}$ and $\frac{a}{1} = \frac{a(1-a)}{1-a} = 0$.)

(b-3) Let B=P(X) be the power set of X; and let

b, + b2: = b, Ab2 be the symmetric difference and

 $b_1 \cdot b_2 := b_1 \cap b_2$. Convince yourself that $(B,+,\cdot)$ is a boolean

ning. Prove that B is Noetherian if and only if IXI < 0.

- (c) Suppose, Yxp & Spec (A), Ay is an integral domain; Is A necessarily an integral domain?
- (d) Suppose, Vip∈ Spec (A), App is Noetherian; Is A necessarily Noetherian?

Homework 2

Friday, April 13, 2018 2:50 PM

2. Let B be a flat A-algebra. Then the following statements are

equivalent:

(i) $\pi^{ec} = \pi$ for any πA .

(11) Spec (B) -> Spec (A) is surjective.

(iii) Y THE Max (A), THE & B.

(1V) If M is any non-zero A-module, then $M \otimes B \neq 0$.

(1) For every A-module M, M \longrightarrow M \otimes B is injective. $x \longmapsto x \otimes 1$

 $(\underline{\text{Hint}}. \ (\underline{\text{1}}) \Rightarrow (\underline{\text{1}}\underline{\text{1}}); \text{ we proved } p \in \text{Im } f^* \iff p = p^{ec};$

(11) => (111); is clear;

(1ii) ⇒ (iv); For any X∈M, 0 → Ax → M is exact

Since B is a flat A-module, o - AX & B - Ma B is exact.

So it is enough to show $A \times \otimes B \neq 0$. Notice $A \times \simeq A/D$

and A/DC & B ~ B/De.

(1V) \Rightarrow (V); Suppose $M' = \ker (M \rightarrow M \otimes_A B)$. Since B is a

flat A-mod, 0 - M'&B - M &B - (M&B) &B is

exact. Let g: (M&B) &B -> M&B, g(x&b) := xb. Show that

g is a well-defind B-mod. hom, and g.f = id. And so f is injective.

 $(v) \Rightarrow (1)$ Show $A/m \xrightarrow{B}/m^{e}$

We say B is faithfully flat over A if these properties hold.

- 3.(a) Let $A = k Ix, y, z 1/\langle xy z^2 \rangle$, $p := \langle \overline{x}, \overline{z} \rangle$. Prove that $p \in Spec(A)$ and p^2 is NOT primary.
 - (b) Let $q = \langle x, y^2 \rangle \triangleleft k [x, y]$. Prove $\sqrt{q} = \langle x, y \rangle \in \text{Nax}(k[x,y]);$ Deduce that q is ttr-primary. Show $q \neq ttr$ $\forall n \in \mathbb{Z}$).
 - (c) Let $DC = \langle x^2, xy \rangle \triangleleft k [x,y]$. Find two reduced primary decompositions for DC.

(In this problem, to is a field; x,y, z are indeterminants.)

- 4. For or or A, let or [x] = { \sum_{i=0}^{m} a_i x^i | a_i \in \operatorname \gamma^{20}}. Consider A \in A[x].
 - (a) Convince yourself that De = D[x]. Show that Spec (A) e Spec (A[x]) is a coell-defined injection.
 - (b) Prove that, if of is a up-primary ideal of A, then de is a up-primary ideal of A[x].
 - (d) Prove that $0 \subseteq \langle x_1 \rangle \subseteq \langle x_1, x_2 \rangle \subseteq ... \subseteq \langle x_1, ..., x_n \rangle$ is a chain of prime ideals of $k[x_1, ..., x_n]$ and $\langle x_1, ..., x_r \rangle$ is $\langle x_1, ..., x_r \rangle$ primary. (k:field and x_i 's are indeter.)

Homework 2

Friday, April 13, 2018 4:12 PM

5. Suppose $p \in Spec(A)$. Consider $A \longrightarrow A_{p}$; and let $p^{(n)} := (p^n)^{eC}$

- (1) Prove that sp is up-primary.
- (ii) Prove that, if p^n is decomposable, then p^n is the smallest element of Ass(p^n); and $p^{(n)}$ is its p-factor.

In particular, ip is primary if and only if ip = ip .