1. Suppose \(B/A \) is an integral extension. Prove that \(J(A) = J(B) \cap A \)
where \(J(\cdot) \) is the Jacobson radical of \(\cdot \).

2. (a) Let \(B = \mathbb{Z}[x_0, \ldots, x_{n-1}, y_0, \ldots, y_{m-1}] \) be the ring of polynomials.

Let \(z_i = z_i (x_0, \ldots, x_{n-1}, y_0, \ldots, y_{m-1}) \in \mathbb{Z}[x_0, \ldots, x_{n-1}, y_0, \ldots, y_{m-1}] \) be such that

\[
(T^n + x_{n-1} T^{n-1} + \cdots + x_1 T + x_0)(T^m + y_{m-1} T^{m-1} + \cdots + y_0) = T^{n+m} + z_{n+m-1} T^{n+m-2} + \cdots + z_1 T + z_0.
\]

Prove that \(\mathbb{Z}[x_0, \ldots, x_{n-1}, y_0, \ldots, y_{m-1}] \) is a finitely generated \(\mathbb{Z}[z_0, \ldots, z_{n+m-1}] \) module.

(b) Suppose \(B/A \) is a ring extension and \(C \) is the integral extension
of \(A \) in \(B \). Suppose \(f, g \in B[x_1] \) are monic polynomials. Prove that

\[f(x) \mid g(x) \iff f(x), g(x) \in C[x_1]. \]

(Hint: (a) Let \(F \) be the field of fractions of \(A \) and \(E/f \) be the

splitting field of \(T^{n+m} + z_{n+m-1} T^{n+m-2} + \cdots + z_0 \) over \(F \). Deduce all the
zeros of \(T^n + x_{n-1} T^{n-1} + \cdots + x_0 \) and \(T^m + y_{m-1} T^{m-1} + \cdots + y_0 \) are integral over \(\overline{A} = \mathbb{Z}[z_0, \ldots, z_{n+m-1}] \).

(b) Let \(f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \) and
$g(x) = x^n + a_{m-1}x^{m-1} + \cdots + a_0$. Use part (a) and "evaluate" at a_0, \ldots, a_{m-1}, a_0', \ldots, a_{m-1}' to deduce the subring generated by a_i, a_i''s is integral over the subring generated by the coeff. of x^n in $g(x)$.)

3. (a) Suppose B/C is a ring extension and $B \setminus C$ is closed under multiplication. Prove that C is integrally closed in B.

(b) Suppose B/A is a ring extension and C is the integral closure of A in B. Prove that $C[x]$ is the integral closure of $A[x]$ in $B[x]$.

(Hint: Suppose $b \in B$ is integral over C, and let $n \in \mathbb{Z}^+$ be the smallest number such that $b^n + c_{n-1}b^{n-1} + \cdots + c_0 = 0$ for some $c_i \in C$.

And show, if $b \in C$, then $n-1$ also satisfies the above property.

(b) Show $B[x] \setminus C[x]$ is closed under multiplication.)

4. (a) Suppose A is a ring and G is a finite subgroup of $\text{Aut}(A)$.

Let $A^G := \{ a \in A \mid \forall \sigma \in G, \sigma(a) = a \}$. Prove that A/A^G is an integral extension.

(b) For $\mathfrak{p} \in \text{Spec}(A^G)$, prove that $G \cap (\mathfrak{p}^{-1})_{\mathfrak{p}}$ transitivity
\[f: \mathbb{A}^g \rightarrow A. \]

5. Suppose \(k/\mathbb{Q} \) is a finite Galois extension. Let \(\mathcal{O}_k \) be the integral closure of \(\mathbb{Z} \) in \(k \). Suppose \(\mathcal{O}_k \) is a finitely generated ring. Prove that

(a) \(\mathcal{O}_k \) is integrally closed.

(b) \(\dim \mathcal{O}_k = 1 \); and so \(\text{Spec} \mathcal{O}_k = \emptyset \cup \text{Max} \mathcal{O}_k \).

(c) For any prime number \(p \), \(\emptyset \neq \mathfrak{p} \in \text{Spec} (\mathcal{O}_k) \mid \mathfrak{p} \mid \mathcal{O}_k \) is a non-empty finite set, and \(\text{Gal}(k/\mathbb{Q}) \) acts transitively on this set.

(d) \(\forall \mathfrak{a} \neq 0 \neq \mathcal{O}_k, \exists ! \) (up to permutation) primary ideals \(\mathfrak{p}_1, \ldots, \mathfrak{p}_n \) s.t.

\[\mathfrak{a} = \mathfrak{p}_1 \cdots \mathfrak{p}_n. \]

(e) If \(\mathfrak{p} \) is a non-zero primary ideal, then \(\sqrt{\mathfrak{p}} = \bigcup \mathfrak{m} \in \text{Max} \mathcal{O}_k \) and \(\exists n \in \mathbb{Z}^+, \mathfrak{m}^n \subseteq \mathfrak{p} \).

(f) \(\forall \mathfrak{m} \in \text{Max} (\mathcal{O}_k), \mathcal{O}_k/\mathfrak{m} \) is a finite field.

(g) \(\forall \mathfrak{a} \subset \mathcal{O}_k, \text{ then } N_{\mathcal{O}_k}(\mathfrak{a}) := |\mathcal{O}_k/\mathfrak{a}| < \infty. \)