Homework 6

Suppose D is a Noetherian integral domain, and, for any the $\operatorname{Max} D$, $D_{\text {ir }}$ is a PID. Let F be the field of fractions of D. A D-submodule M of F is called a fractional ideal if

$$
(D: M):=\xi \alpha \in F \mid \alpha M \subseteq D\} \neq 0 .
$$

(a) Prove that (D:M) $M=D$ if $M \neq 0$.

$$
\left(\text { Hint. }((D: M) M)_{\text {tit }}=\left(D_{\text {try }}: M_{\text {tret }}\right) M_{\text {tr }} \cdot\right)
$$

(b) Prove that M is a finitely generated projective D-mod.
(Hint. $\exists \alpha_{i} \in(D: M), m_{i} \in M$ st. $\alpha_{1} m_{1}+\cdots+\alpha_{n} m_{n}=1$.

$$
\begin{aligned}
& 0 \rightarrow \operatorname{ker} \theta \\
& \theta\left(a_{1}, \cdots, a_{n}\right):=a_{1} m_{1}+\cdots+a_{n} m_{n} \\
& \psi(m)\left.:=\left(\alpha_{1} m, \alpha_{2} m, \ldots, \alpha_{n} m\right) .\right)
\end{aligned}
$$

(c) Prove that, for any $p p \in S_{p e c}\left(D, M_{¢ p} \simeq D_{p p}\right.$; and so $[M] \in \operatorname{Pic}(D)$.
(d) Suppose $[N] \in P_{i c}(D)$; that means N is a $f \cdot g$. projective \bmod. St, for some $\mathbb{T r} \in \operatorname{Max} D, N_{\text {tr }} \simeq D_{\text {tr }}$. Prove that $N \otimes \otimes_{D} F \longrightarrow F, n \otimes 1 \longmapsto n$ is an $F-\bmod$ isomorphism.

Homework 6
Monday, May 28, 2018 6:35 PM

Let $\theta: N \otimes_{D} F \rightarrow F, \theta(n \otimes 1)=n ; \theta$ is a well-defined F - linear map and $\operatorname{lm} \theta \neq 0 ; 1$
(e) Suppose M_{1} and M_{2} are two fractional ideals. Prove that

$$
M_{1} \simeq M_{2} \text { as } D \text {-modules } \Leftrightarrow \exists \alpha \in F^{x}, \alpha M_{1}=M_{2} .
$$

$\phi(m) \longmapsto \phi(m) \perp 1 \longmapsto \phi\left(m \otimes^{\perp} \longmapsto \phi(m) \quad.\right)$
(f) Let Frac $(D):=\xi M \subseteq F \mid M$: fractional ideal ξ^{\prime};
(f-1) For $M_{1}, M_{2} \in \operatorname{Frac}(D), M_{1} M_{2} \in \operatorname{Frac}(D)$.
Show that $(\operatorname{Frac}(D),$.$) is a group with neutral element D$.
$(f-2)$ Let $\operatorname{Prin}(D):=\{\alpha D \mid \alpha \in F\}$. Prove that $\operatorname{Prin}(D)$ is a subgroup of Frac (D).
(f-3) For $M_{1}, M_{2} \in$ Fac (D), Prove that $M_{1} \otimes_{D} M_{2} \rightarrow M_{1} M_{2}$ is an isomorphism.

$$
m_{1} \otimes m_{2} \mapsto m_{1} m_{2}
$$

Homework 6
(g) Let $\theta: \operatorname{Froc}(D) \longrightarrow \operatorname{Pic}(D), \quad \theta(M):=[M]$; prove that θ is a well-defined, onto group homomorphism, and $\operatorname{ker}(\theta)=\operatorname{Prin}(D)$. Deduce that $C l(D) \simeq \operatorname{Pic}(D)$, where $C(D):=\operatorname{Frac}(D) / P_{\text {min }}(D)$ is the class group of D.

