Homework 6
Monday, May 28, 2018 9:28 MM
Suppose D is a Noetherian integral domains and, for any the Max D,
D_{th} is a PID. Let F be the field of fractions of D. A D-submodule
M of F is called a fractional ideal if
(D:M) :=
$$g \alpha \in F \mid \alpha M \subseteq D \ g \neq 0$$
.
(a) Prove that (D:M) M = D if $M \neq 0$.
(Hint: (D:M)M) = (D_{th}:M_{th}) M_{th} ·)
(c) Prove that M is a frintely generated projective D-mod.
(Hint: $\exists \alpha_i \in (D:M)$, $m_i \in M$ st. $\alpha_i m_1 + \dots + \alpha_n m_n = 1$.
 $0 \rightarrow \ker \theta \rightarrow D^n \frac{\theta}{4\pi i} M \rightarrow 0$
 $\theta(\alpha_1, \dots, \alpha_n) := \alpha_1 m_1 + \dots + \alpha_n m_n$
 $2f(m) := (\alpha_1(m, \alpha_2(m, \dots, \alpha_n(m)) -)$
(c) Prove that, for any experise D, Mp αD_{th} ; and so IMI \in Pric(D).
(d) Suppose [N] \in Pre(D); that means N is a fig. projective
mad. st; for some the Max D, N_{th} αD_{th} . Prove that
N@F $\longrightarrow F$, $n \otimes 1 \longmapsto n$ is an F-mad isomorphism.

Homework 6 Monday, May 28, 2018 6:35 PM $(\underbrace{\text{Hint}}_{\bullet} \mathsf{N} \otimes \mathsf{F} \simeq \mathsf{N} \otimes \mathsf{D}_{\mathsf{H}} \otimes \mathsf{F} \simeq \mathsf{N}_{\mathsf{H}} \otimes \mathsf{F} \simeq \mathsf{D}_{\mathsf{H}} \otimes \mathsf{F} \simeq \mathsf{D}_{\mathsf{H}} \otimes \mathsf{F} \simeq \mathsf{P}_{\mathsf{H}} \otimes \mathsf{P} \simeq \mathsf{P} \simeq \mathsf{P}_{\mathsf{H}} \otimes \mathsf{P} \simeq \mathsf{P} \simeq \mathsf{P}_{\mathsf{H}} \otimes \mathsf{P} \simeq \mathsf{P}$ Let $\Theta: N \otimes F \longrightarrow F$, $\Theta(n \otimes 1) = n$; Θ is a well-defined F-linear map and $\lim \Theta \neq 0$;) (e) Suppose M1 and M2 are two fractional ideals. Prove that $M_1 \simeq M_2$ as D-modules $\iff \exists \alpha \in F^X$, $\alpha M_1 = M_2$. $(\underbrace{\text{Hint.}}_{N_{2}} \bigoplus) \xrightarrow{\text{m}} M_{1} \bigoplus M_{2} \bigoplus M_{2} \bigoplus M_{2} \bigoplus M_{2} \bigoplus F \xrightarrow{\text{m}} F$ $\phi(m) \longmapsto \phi(m) \otimes \bot \longmapsto \phi(m) \otimes \bot \longmapsto \phi(m)$ (f) Let $\operatorname{Frac}(D) := \mathbb{Z} M \subseteq \mathbb{F} | M : \operatorname{Fractional ideal} \mathbb{F}$ (f-1) For $M_1, M_2 \in \operatorname{Frac}(D)$, $M_1 M_2 \in \operatorname{Frac}(D)$. Show that (Frac (D), .) is a group with neutral element D. (f-2) Let Prin (D). = Z a D | a E F J. Prove that Prin (D) is a subgroup of Frac (D). (J-3) For M, M2 & Frac CD), Prove that M, & M2 - M1M2 $m_1 \otimes m_2 \mapsto m_1 m_2$ is an isomorphism.

Homework 6
Monday, May 28, 2013 1011 FM
(g) Let
$$\Phi: \operatorname{Frac}(\mathbb{D}) \longrightarrow \operatorname{Pic}(\mathbb{D}), \ \Theta(\mathbb{M}) := \mathbb{D}\mathbb{N}];$$
 prove that
 θ is a coell-defined, onto group homomorphism, and
 $\ker(\Theta) = \operatorname{Prin}(\mathbb{D}).$ Deduce that $\operatorname{Cl}(\mathbb{D}) \simeq \operatorname{Pic}(\mathbb{D}),$
cohere $\operatorname{Cl}(\mathbb{D}) := \operatorname{Frac}(\mathbb{D})/\operatorname{Prin}(\mathbb{D})$ is the class group of $\mathbb{D}.$