Homework 7
Thursday, May 31, 2018 1023 PM
1. Let
$$Q_k$$
 be the ring of integers of a number field k. Prove
that Q_k is a UFD if and only if Q_k is a PID.
2. Suppose k is an algebraically closed field. For $f_1, ..., f_{n-1}$ in
 $k[X_1, ..., X_{n-1}]$, let $X(f_1, ..., f_{n-1}) := ? p \in k^n | f_1(p) = ... = f_{n-1}(p) = o.?$
Using Krull's height theorem and dim $k[X_1, ..., X_n] = n$, prove that
either $X(f_1, ..., f_{n-1}) = \emptyset$ or $[X(f_1, ..., f_{n-1})] = \infty$.
3. Suppose O is an integral domain and A is a finitely generated
O-algebra. Let $i: O \longrightarrow A$ and i^* : spec $A \longrightarrow$ spec O.
For $\mu \in$ Spec O, let kip := the field of fractions of Q_{ip} .
Prove that $\exists u \in O$ s.t. $\alpha_i \neq ip \Rightarrow \dim A_{ip} kap = \dim A_{ip} k(\infty)$.
It is $k[X_1, ..., X_n] = n$. Use Noether normalization for $A_{ip} k(\infty)$.
It field $\alpha \in O \setminus S_i^n$ and $\alpha_1, ..., \alpha_n \in A$ s.t. α_i is are alg. indep-
over kes and $A[i_{d-1}]$ is integral over $O(i_{d-1}[X_1, ..., X_n]]$.
Deduce, if $\alpha_i \neq i_p$, then $A \otimes_i k(\alpha_i)$ is integral over $k \otimes_i p[X_1, ..., X_n]$.

Homework 7 Saturday, June 2, 2018 10:48 PM 4. Suppose A is a Noetherian ring and \mathcal{O} \mathcal{A} . Let $b := \bigcap_{i=1}^{\infty} \overline{\alpha}^{i}$. Prove that $\overline{\alpha} = b$. [Hint. Suppose $DCb \neq b$, and let $\bigcap_{j=1}^{n} q_{j}$ be a reduced primary decomposition of DC b. So Ij, 10 \$ qr. Suppose x = b q. Then DL (q. x) ≤ p. => $10 \subseteq TC \subseteq P_j \subseteq Q_j$ which is a contradiction.] 5. Suppose A is a Noetherian local ring and $Max A = \frac{3}{2} + 11\frac{3}{2}$. Prove $\bigcap_{n=1}^{\infty} \text{Hr}^n = 0$.