1. Let \mathcal{O}_k be the ring of integers of a number field k. Prove that \mathcal{O}_k is a UFD if and only if \mathcal{O}_k is a PID.

2. Suppose k is an algebraically closed field. For f_1, \ldots, f_{n-1} in $k[x_1, \ldots, x_n]$, let $X(f_1, \ldots, f_{n-1}) = \{ p \in k^n \mid f_1(p) = \ldots = f_{n-1}(p) = 0 \}$. Using Krull's height theorem and $\dim k[x_1, \ldots, x_n] = n$, prove that either $X(f_1, \ldots, f_{n-1}) = \emptyset$ or $|X(f_1, \ldots, f_{n-1})| = \infty$.

3. Suppose \mathcal{O} is an integral domain and A is a finitely generated \mathcal{O}-algebra. Let $i: \mathcal{O} \to A$ and $i^*: \text{spec } A \to \text{spec } \mathcal{O}$.

For $\mathfrak{p} \in \text{spec } \mathcal{O}$, let $k(\mathfrak{p}) = \text{the field of fractions of } \mathcal{O}_{i^*(\mathfrak{p})}$.

Prove that $\exists \alpha \in \mathcal{O}$ s.t. $\alpha \notin \mathfrak{p} \Rightarrow \dim A \otimes_{\mathcal{O}} k(\mathfrak{p}) = \dim A \otimes_{\mathcal{O}} k(\mathfrak{p})$.

(Hint: $\dim k[x_1, \ldots, x_n] = n$. Use Noether normalization for $A \otimes_{\mathcal{O}} k(\mathfrak{p})$ to find $\alpha \in \mathcal{O} \setminus \mathfrak{p}$ and $x_1, \ldots, x_n \in A$ s.t. x_i's are alg. indep. over $k(\mathfrak{p})$, and $A[\frac{1}{\alpha}]$ is integral over $\mathcal{O}[\frac{1}{\alpha}]][x_1, \ldots, x_n]$. Deduce, if $\alpha \notin \mathfrak{p}$, then $A \otimes_{\mathcal{O}} k(\mathfrak{p})$ is integral over $k(\mathfrak{p})[x_1, \ldots, x_n]$.}
4. Suppose \(A \) is a Noetherian ring and \(\mathfrak{a} \not\subseteq A \). Let

\[\mathfrak{b}_0 := \bigcap_{i=1}^{\infty} \mathfrak{a}^i. \]

Prove that \(\mathfrak{a} \mathfrak{b}_0 = \mathfrak{b}_0 \).

[Hint. Suppose \(\mathfrak{a} \mathfrak{b}_0 \neq \mathfrak{b}_0 \), and let \(\bigcap_{j=1}^{n} \mathfrak{q}_j \) be a reduced primary decomposition of \(\mathfrak{a} \mathfrak{b}_0 \). So \(\exists j, \mathfrak{b}_0 \not\subseteq \mathfrak{q}_j \).

Suppose \(x \in \mathfrak{b}_0 \setminus \mathfrak{q}_j \). Then \(\mathfrak{a} \subseteq (\mathfrak{q}_j : x) \subseteq \mathfrak{p}_j \). \(\Rightarrow \)

\[\mathfrak{b}_0 \subseteq \mathfrak{a}^m \subseteq \mathfrak{p}_j^m \subseteq \mathfrak{q}_j \] which is a contradiction.]

5. Suppose \(A \) is a Noetherian local ring and \(\text{Max} \ A = \mathfrak{m}_1 + \mathfrak{m}_2 \).

Prove \(\bigcap_{n=1}^{\infty} \mathfrak{m}_n = 0 \).