Lecture 03: Contraction map and localization

Wednesday, April 4, 2018

10.43 AM

In the previous lecture we stated the following:

Proposition. Suppose S is a multiplicatively closed subset of A, and

of S. Let $f: A \longrightarrow S^{-1}A$, $f(a) := \frac{a}{1}$. Then f^* induces a

bijection from Spec ($S^{1}A$) to $\mathcal{E}_{\mathcal{A}} = \mathcal{E}_{\mathcal{A}} = \mathcal{E}_{\mathcal{A}}$.

Pf. Claim 1. Any ideal $\widetilde{\mathcal{R}}$ of S^1A is of the form S^1DC where $DC := \widetilde{\mathcal{R}}^c$.

 $\underline{\mathcal{H}}$. By definition $\mathcal{U} = \{ a \in A \mid \underbrace{a}_{1} \in \widetilde{\mathcal{H}} \}$. Clearly $S^{-1}\mathcal{U} \subseteq \widetilde{\mathcal{U}}$.

Now suppose $\frac{a}{s} \in \mathcal{U}$. Then $\frac{s}{1} \cdot \frac{a}{s} = \frac{a}{1} \in \mathcal{U}$; and so

 $\alpha \in \mathbb{R}$, which implies $\alpha \in S^{-1}\mathbb{R}$. (here $s \in S$.).

Claim 2. If FRE Spec (S-1A), then P*(F) n S= Ø.

 $\frac{\mathbb{P}}{\mathbb{P}}$. By Claim 1, $\mathcal{F} = S^{-1} \mathcal{F}(\mathcal{F})$. So $S^{-1} \mathcal{F}(\mathcal{F})$ is a proper

ideal. Therefore Sn f*(fp) = Ø

Claim 3. $f^*(\mathring{p}_1) = f^*(\mathring{p}_2) \Rightarrow \mathring{p}_1 = \mathring{p}_2$

 $\frac{Pf}{P}$ By Claim 1, $\frac{1}{100} = \frac{1}{100} + \frac{1}{100} = \frac{1}{100} + \frac{1}{100} = \frac{1}{$

Claim 4. Suppose the Spec (A) and $sp \cap S = \emptyset$. Then $S^{-1}p \in Spec (S^{-1}h)$.

Lecture 03: Spec of localization

Wednesday, April 4, 2018

12·33 AM

Pf. Let $\overline{S} := \pi(S)$ where $\pi : A \to A_{pp}$ is the natural quotient map. Since $S \cap p = \emptyset$, $\overline{O} \notin \pi(S)$. So $\pi(S)^{-1}(A_{p})$ can be embedded into the field of fractions $Q(A_{p})$ of the integral domain A_{p} . On the other hand, $S^{-1}A_{p} = \pi(S)^{-1}(A_{p})$ (why?). Hence $S^{-1}A_{p} = \pi(S)^{-1}(A_{p})$ an integral domain; and so $S^{-1}P \in Spec(S^{-1}A)$.

Claim 5. Suppose $\varphi \in Spec(A)$ and $\varphi \cap S = \varnothing$. Then $f^*(S^{\frac{1}{4}}) = \varphi$.

 $\frac{Pf}{}$. Clearly $f \subseteq f^*(S^{-1}f)$. Now suppose $\frac{\alpha}{1} \in S^{-1}f$. Then

I ses sit. sa exp = either sexp or a exp. As Snip=&

we deduce that a exp; and claim follows.

By claim 2, f^* induces a function from Spec($5^{-1}A$) to

Expe Spec (A) | upn S= &3; by claim 3, +* is injective;

by Claim 4 and 5, we get the image of f*.

Lecture 03: Spec of localization

Friday, April 6, 2018

Corollary. Suppose & ESpec(A), and f: A - Ap, f(a) = a

(reall Sp:= A sp is multiplicatively closed, and Ap = Sp A.).

Then 1*: Spec(Ag) - Spec(A) induces a bijection from

Spec (App) to { of a Spec (A) | of = sp}

Corollary. Suppose f: A - B is a ring homomorphism, and

xp ∈ Spec (Å). Let k αφ) be the residue field at xp; that means

 $k(p) := \frac{Ap}{Ap}$. Then $(p^*)^{-1}(p)$ is in bijection with $Spec(B \otimes k(p))$.

 $\frac{\text{Pf. Claim 1}}{\text{Claim 1}} \cdot A_{\text{ph}} \otimes_{A} B \simeq \text{P(S_{\text{p}})}^{-1} B \qquad \qquad \frac{\text{am}}{\text{s}} \circ_{\text{m}} \longrightarrow \frac{\text{am}}{\text{s}} \circ_{\text{m}} .$

Pf. For an A-mod M, we have proved STA & M ~ STM;

f: A - B makes B into an A-mod via a.b := fra) b

scalar multiplication. And so as A-modules we get that

Ap & B ~ f(Sp) B, a & b | fa) b. Notice that

 $\left(\frac{a_1}{S_1}\otimes b_1\right)\left(\frac{a_2}{S_2}\otimes b_2\right) = \frac{a_1a_2}{S_1S_2}\otimes b_1b_2 \longrightarrow \frac{f(a_1a_2)b_1b_2}{f(s_1s_2)}$

 $\frac{f(a_1)b_1}{f(s_1)} \cdot \frac{f(a_2)b_2}{f(s_2)} = \frac{f(a_1a_2)b_1b_2}{f(s_1s_2)} \cdot So \theta \text{ is a ring homo} \cdot \square$

Lecture 03: Fiber over a prime

Friday, April 6, 2018 8:03 A

 $\frac{\text{Claim 2}}{\text{Claim 2}} \cdot \text{Box}_{A} k(P) \simeq \frac{P(S_p)^{-1}B}{P(S_p)^{-1} \langle P(P) \rangle}$

Pf. We have proved that if g: R-R is a ring homo.,

then, for any IAR, $R' \otimes_{R} R/I \simeq R'/g(I)R' = R'/Ie$

(we will continue next time)