Lecture 07: Primary ideals of ring of fractions

Friday, April 13, 2018 10:39 AN

At the end of the previous lecture we were proving the following propo.

Proposition. Let $f: A \rightarrow S^{-1}A$, $f(a) = \frac{a}{1}$.

- (1) Suppose of is sp-primary, and $P \cap S \neq \emptyset$. Then $S^{-1}q = S^{-1}A$.
- (2) Suppose of is sp-primary, and sp $S = \emptyset$. Then $S^{-1}q$ is $S^{-1}sp$ primary.
- (3) Suppose of is p-primary, $q = q^c$, and $p = p^c$. Then q is p-primary.

Pf. We have already proved (1). (2) We start by proxing $\sqrt{S^{4}q} = S^{4}p$. Notice that $S^{4}q \subseteq S^{4}p$ and $S^{4}p$ is prime as $\sqrt{S^{4}q} = \sqrt{S^{4}q} \subseteq \sqrt{S^{4}q} \subseteq \sqrt{S^{4}q}$. On the other hand, $\sqrt{S^{4}q} \subseteq \sqrt{S^{4}q}$; and so $\sqrt{S^{4}q} = S^{4}p$.

 $\frac{x}{s} \cdot \underbrace{y} \in S^{-1} \Leftrightarrow \exists s' \in S, \quad s' \times y \in \Leftrightarrow \exists s' \in S) \quad y \in \Leftrightarrow \exists y \in \Leftrightarrow \exists s' \in S, \quad s' \times y \in \Leftrightarrow \exists s' \in S \Leftrightarrow S \Leftrightarrow \exists s' \in S \Leftrightarrow \exists s' \in$

Lecture 07: Primary ideals of ring of fractions

Thursday, April 12, 2018

10:38 PM

(3) Suppose of is ip-primary, q=qc, xp=xpc. Then xp & Spec (A),

 $\varphi \cap S = \emptyset$, and $\varphi = S^{-1}\varphi$; and $\varphi = S^{-1}\varphi$.

• $x \in \mathcal{P} \leftrightarrow \underbrace{x}_{1} \in \widetilde{\mathcal{P}} \leftrightarrow \exists n \in \mathbb{Z}^{+}, \ \frac{x^{n}}{1} \in \widetilde{\mathcal{P}} \leftrightarrow \exists n \in \mathbb{Z}^{+}, \ x^{n} \in \mathcal{P}.$

Hence $\sqrt{\alpha} = tp$.

• $xy \in \varphi \rightarrow \begin{cases} \frac{xy}{1} \in \mathring{\varphi} \end{cases} \Rightarrow \frac{y}{1} \in \mathring{\varphi} \Rightarrow y \in \varphi$. $x \notin \varphi \rightarrow \begin{cases} \frac{xy}{1} \notin \mathring{\varphi} \end{cases} \Rightarrow \frac{y}{1} \in \mathring{\varphi} \Rightarrow y \in \varphi$.

(4) By (2), we showed e is well-defined. By (1), we get

that c is well-defined; and by (3), we get that e is onto.

For any $\widetilde{\mathcal{R}} \triangleleft S^{-1}A$, we have $\left(\widetilde{\mathcal{R}}^{c}\right)^{e} = \widetilde{\mathcal{R}}$. For $\widetilde{\mathcal{R}} \triangleleft A$, let

S(DL) := (DL) . So it is only remaind to show S(x) = x if q

is to-primary and tONS=Ø.

 $X \in S(\emptyset) \Rightarrow X \in S^{-1} \Leftrightarrow \exists s \in S, s \times \in \emptyset \Rightarrow \exists s \times \in \emptyset \Rightarrow x \in \emptyset$

. Clearly $S(\mathcal{D}) \supseteq \mathcal{D}C$.

Notice that $abla \subseteq S(ab); p = S(ab) if <math>p \in Spec(A)$ and $p \cap S = \emptyset;$

d=S(d) if d is &-primary and &nS=\$.

Lecture 07: Primary decompositions and localization

Thursday, April 12, 2018 11

What happens to a primary decomposition after a localization?

Lemma. Suppose $TI = \bigcap_{i=1}^{n} q_i$ is a reduced primary decomposition,

q: is xp. - primary, S⊆A is a multiplicatively closed subset,

 $Snp = \emptyset$ for $1 \le j \le m$, and $Snp \ne \emptyset$ for $m < j \le n$. Then

 $S^{-1}\Pi = \bigcap_{i=1}^{m} S^{-1}q_i$ and $S(\Pi) = \bigcap_{i=1}^{m} q_i$.

 $\frac{\text{Pf.} \cdot \mathbf{\Pi} \subseteq \mathbf{G}_{i}}{\text{S}^{-1}\mathbf{\Pi} \subseteq \mathbf{G}^{-1}\mathbf{G}_{i}} \Rightarrow \mathbf{S}^{-1}\mathbf{\Pi} \subseteq \bigcap_{i=1}^{n} \mathbf{S}^{-1}\mathbf{G}_{i} \supseteq \bigcap_{i=1}^{m} \mathbf{S}^{-1}\mathbf{G}_{i}$ $\mathbf{S}^{-1}\mathbf{G}_{i} = \mathbf{S}^{-1}\mathbf{A} \quad \text{if } m < i \leq n$ (1)

 $\frac{\chi}{S} \in \bigcap_{i=1}^{m} S^{-1} \varphi_{i} \Rightarrow \frac{\chi}{1} \in \bigcap_{i=1}^{m} S^{-1} \varphi_{i} \Rightarrow \chi \in \bigcap_{i=1}^{m} S(\varphi_{i}) = \bigcap_{i=1}^{m} \varphi_{i}$

Let Sj ∈ Sn& for m<j≤n. So Sminsnx ∈ n q; = \(\Pi\). Hence

 $\frac{x}{s} = \frac{s_{m+1} \cdot \dots \cdot s_n x}{s_{m+1} \cdot \dots \cdot s_n s} \in s^{-1} \nabla c \cdot (2)$

(1) & (2) imply $S^{-1}\sigma = \bigcap_{i=1}^{m} S^{-1}\phi_i$.

 $S(\pi) = \left(S^{-1}\pi\right)^c = \left(\bigcap_{i=1}^m S^{-1}q_i\right)^c = \bigcap_{i=1}^m \left(S^{-1}q_i\right)^c = \bigcap_{i=1}^m q_i \cdot \blacksquare$

 $\underline{Def.}$ $\underline{\sum}$ \subseteq Ass(\overline{vc}) is called isolated if

 $\forall p \in \Sigma, p \in Ass(DI), p' \subseteq p \Rightarrow p \in \Sigma$

Ex. If up is a minimal element of ASS(DC), then Exp& is isolated.

Lecture 07: Second uniqueness theorem

Thursday, April 12, 2018

Theorem. Suppose $DC \triangleleft A$ is decomposable, $DC = \bigcap_{i=1}^{n} C_i^k$. is a reduced

primary decomposition, and or is to-primary. Suppose

 $\Sigma := {\frac{3}{2}}, ..., {\frac{1}{10}} \subseteq Ass(DC)$ is isolated; that means

 $\psi \in \Sigma, \ \psi \in Ass(\alpha), \ \psi \subseteq \psi \Rightarrow \psi \in \Sigma.$

Then n q just depends on I (it is independent of

the choice of the reduced primary decomposition (i).

In particular, if up is a minimal prime ideal associated with Dr,

then the xp-primary factor of is unique.

7. Let S:= A\(U \mapsis). Then S is a multiplicatively

closed set; $\forall p \in \Sigma$, $S_{\Omega} : p = \emptyset$; $p \in Ass(DL) \setminus \Sigma$,

then $\forall p \in \Sigma$, $p \neq p'$. Hence $p \neq U p'$.

→ Pn St & Therefore by the previous lemma

 $S_{\underline{\Sigma}}(m) = \bigcap_{j=1}^{m} \varphi_{j_{0}}$

. If up is a minimal prime ideal associated with or, then Z=3293

is isolated; and the claim follows.