At the end of the previous lecture we were proving the following proposition.

Proposition. Let \(f: A \to S^{-1}A \), \(f(a) = \frac{a}{1} \).

1. Suppose \(\mathfrak{q} \) is \(\mathfrak{p} \)-primary, and \(\mathfrak{p} \cap S \neq \emptyset \). Then \(S^{-1}\mathfrak{q} = S^{-1}A \).

2. Suppose \(\mathfrak{q} \) is \(\mathfrak{p} \)-primary, and \(\mathfrak{p} \cap S = \emptyset \). Then \(S^{-1}\mathfrak{q} \) is \(\mathfrak{p}^{-1} \)-primary.

3. Suppose \(\mathfrak{q} \) is \(\mathfrak{p}^{-1} \)-primary, \(\mathfrak{q} = \mathfrak{q}^c \), and \(\mathfrak{p} = \mathfrak{p}^c \). Then \(\mathfrak{q} \) is \(\mathfrak{p} \)-primary.

4. Consider the maps induced by the contraction one extension maps:

\[\left\{ \begin{array}{c}
\{ \mathfrak{q} \in A | \mathfrak{q} \text{ is } \mathfrak{p} \text{-primary, } \mathfrak{p} \cap S = \emptyset \} \\
\{ \mathfrak{q} \in S^{-1}A | \mathfrak{q} \text{ is } \mathfrak{p}^{-1} \text{-primary} \}
\end{array} \right. \]

Then these are inverse of each other.

Pf: We have already proved (1). (2) We start by proving

\[\sqrt{S^{-1}\mathfrak{q}} = S^{-1}\mathfrak{p} \]. Notice that \(S^{-1}\mathfrak{q} \subseteq S^{-1}\mathfrak{p} \) and \(S^{-1}\mathfrak{p} \) is prime as \(\mathfrak{p} \cap S = \emptyset \). Hence \(\sqrt{S^{-1}\mathfrak{q}} \subseteq S^{-1}\mathfrak{p} \). On the other hand, \(S^{-1}\sqrt{S^{-1}\mathfrak{q}} \subseteq \sqrt{S^{-1}\mathfrak{q}} \), and so \(\sqrt{S^{-1}\mathfrak{q}} = S^{-1}\mathfrak{p} \).

\[\frac{x}{s} \cdot \frac{y}{s} \in S^{-1}\mathfrak{q} \Rightarrow \exists s' \in S, s'x y \in \mathfrak{q} \Rightarrow s'(s'x) y \in \mathfrak{q} \Rightarrow y \in \mathfrak{q} \]

\[\frac{x}{s} \notin S^{-1}\mathfrak{p} \Rightarrow x \notin \mathfrak{p} \]

\[\frac{y}{s'} \in S^{-1}\mathfrak{q} \]
Lecture 07: Primary ideals of ring of fractions

Thursday, April 12, 2018 10:38 PM

(3) Suppose \(\mathfrak{q} \) is \(\mathfrak{p} \)-primary, \(\mathfrak{q} = \mathfrak{q}^c, \mathfrak{p}^c = \mathfrak{p}^c \). Then \(\mathfrak{p} \in \text{Spec}(A) \), \(\mathfrak{p} \cap S = \emptyset \), and \(\mathfrak{q} = S^{-1}\mathfrak{p} \); and \(\mathfrak{q} = S^{-1}\mathfrak{q} \).

\[\begin{align*}
\text{If } & x \in \mathfrak{q} \iff \frac{x}{1} \in \mathfrak{q} \iff \exists n \in \mathbb{Z}^+, \frac{x^n}{1} \in \overline{\mathfrak{q}} \iff \exists n \in \mathbb{Z}^+, x^n \in \mathfrak{q}.
\end{align*} \]

Hence \(\sqrt{\mathfrak{q}} = \mathfrak{p} \).

\[\begin{align*}
\text{If } & xy \in \mathfrak{q} \implies \frac{xy}{1} \in \mathfrak{q} \implies \frac{y}{1} \in \overline{\mathfrak{q}} \implies y \in \mathfrak{q}.
\end{align*} \]

(4) By (2), we showed \(e \) is well-defined. By (1), we get that \(e \) is well-defined; and by (3), we get that \(e \) is onto.

For any \(\mathfrak{a} \triangleleft S^{-1}A \), we have \((\mathfrak{a}^c)^e = \mathfrak{a} \). For \(\mathfrak{a} \triangleleft A \), let \(S(\mathfrak{a}) := (\mathfrak{a}^c)^c \). So it is only remain to show \(S(\mathfrak{q}) = \mathfrak{q} \) if \(\mathfrak{q} \)
is \(\mathfrak{p} \)-primary and \(\mathfrak{p} \cap S = \emptyset \).

\[\begin{align*}
\text{If } & x \in S(\mathfrak{q}) \iff \frac{x}{1} \in S^{-1}\mathfrak{q} \iff \exists s \in S, sx \in \mathfrak{q} \iff s \cdot x \in \mathfrak{q}.
\end{align*} \]

Clearly \(S(\mathfrak{a}) \supseteq \mathfrak{a} \). \(\blacksquare \)

Notice that \(\mathfrak{a} \subseteq S(\mathfrak{a}) \); \(\mathfrak{p} = S(\mathfrak{p}) \) if \(\mathfrak{p} \in \text{Spec}(A) \) and \(\mathfrak{p} \cap S = \emptyset \); \(\mathfrak{q} = S(\mathfrak{q}) \) if \(\mathfrak{q} \) is \(\mathfrak{p} \)-primary and \(\mathfrak{p} \cap S = \emptyset \).
What happens to a primary decomposition after a localization?

Lemma. Suppose \(\mathcal{U} = \bigcap_{i=1}^{n} \mathfrak{q}_i \) is a reduced primary decomposition, \(\mathfrak{q}_i \) is \(\mathfrak{p}_i \)-primary, \(S \subseteq \mathcal{A} \) is a multiplicatively closed subset, \(S \mathfrak{p}_j = \emptyset \) for \(1 \leq j \leq m \), and \(S \mathfrak{p}_j \neq \emptyset \) for \(m < j \leq n \). Then

\[
S^{-1} \mathcal{U} = \bigcap_{i=1}^{m} S^{-1} \mathfrak{q}_i \quad \text{and} \quad S(\mathcal{U}) = \bigcap_{i=1}^{m} \mathfrak{q}_i.
\]

Proof. \(\mathcal{U} \subseteq \mathfrak{q}_i \Rightarrow S^{-1} \mathcal{U} \subseteq S^{-1} \mathfrak{q}_i \Rightarrow S^{-1} \mathcal{U} \subseteq \bigcap_{i=1}^{n} S^{-1} \mathfrak{q}_i \Rightarrow S^{-1} \mathcal{U} \subseteq \bigcap_{i=1}^{m} S^{-1} \mathfrak{q}_i \). \[(1) \]

\[
\frac{\alpha}{s} \in \bigcap_{i=1}^{m} S^{-1} \mathfrak{q}_i \Rightarrow \frac{\alpha}{s} \in \bigcap_{i=1}^{m} S^{-1} \mathfrak{q}_i \Rightarrow \alpha \in \bigcap_{i=1}^{m} S(\mathfrak{q}_i) = \bigcap_{i=1}^{m} \mathfrak{q}_i.
\]

Let \(s_j \in S \mathfrak{p}_j \) for \(m < j \leq n \). So \(s_1 \cdots s_n \alpha \in \bigcap_{i=1}^{n} \mathfrak{q}_i \), hence

\[
\frac{\alpha}{s} = \frac{s_{m+1} \cdots s_n \alpha}{s_{m+1} \cdots s_n s} \in S^{-1} \mathcal{U}. \quad (2)
\]

(1) \& (2) imply \(S^{-1} \mathcal{U} = \bigcap_{i=1}^{m} S^{-1} \mathfrak{q}_i \).

\[
S(\mathcal{U}) = (S^{-1} \mathcal{U})^c = \left(\bigcap_{i=1}^{m} S^{-1} \mathfrak{q}_i \right)^c = \bigcap_{i=1}^{m} (S^{-1} \mathfrak{q}_i)^c = \bigcap_{i=1}^{m} \mathfrak{q}_i.
\]

Def. \(\Sigma \subset \text{Ass}(\mathcal{U}) \) is called isolated if

\[
\forall \mathfrak{p}, \mathfrak{q} \in \Sigma, \mathfrak{p} \subsetneq \mathfrak{q} \Rightarrow \mathfrak{p} \cap \mathfrak{q} = \emptyset.
\]

Ex. If \(\mathfrak{p} \) is a minimal element of \(\text{Ass}(\mathcal{U}) \), then \(\mathfrak{p} \subsetneq \mathfrak{q} \) is isolated.
Theorem. Suppose \(\mathfrak{A} \triangleleft A \) is decomposable, \(\mathfrak{A} = \bigcap_{i=1}^{n} \mathfrak{p}_i \) is a reduced primary decomposition, and \(\mathfrak{p}_i \) is \(\mathfrak{p}_i \)-primary. Suppose

\[\Sigma := \{ \mathfrak{p}_1, \ldots, \mathfrak{p}_m \} \subseteq \text{Ass}(\mathfrak{A}) \text{ is isolated;} \text{ that means} \]

\[\mathfrak{p} \in \Sigma, \mathfrak{p}' \in \text{Ass}(\mathfrak{A}), \mathfrak{p}' \subseteq \mathfrak{p} \implies \mathfrak{p}' \in \Sigma. \]

Then \(\bigcap_{i=1}^{m} \mathfrak{p}_i \) just depends on \(\Sigma \) (it is independent of the choice of the reduced primary decomposition \(\bigcap_{i=1}^{n} \mathfrak{p}_i \)).

In particular, if \(\mathfrak{p} \) is a minimal prime ideal associated with \(\mathfrak{A} \), then the \(\mathfrak{p} \)-primary factor \(\mathfrak{q}_i \) is unique.

Proof. Let \(\Sigma_i := A \setminus (\bigcup_{\mathfrak{q} \in \Sigma_i} \mathfrak{q}) \). Then \(\Sigma_i \) is a multiplicatively closed set; \(\forall \mathfrak{p} \in \Sigma \), \(\Sigma_i \mathfrak{p} = \emptyset \); \(\forall \mathfrak{p} \in \text{Ass}(\mathfrak{A}) \setminus \Sigma \),

then \(\forall \mathfrak{p} \in \Sigma, \mathfrak{p} \neq \mathfrak{p}' \). Hence \(\mathfrak{p} \neq \bigcup_{\mathfrak{q} \in \Sigma} \mathfrak{q} \).

\[\mathfrak{p} \cap \Sigma_i \neq \emptyset . \text{ Therefore by the previous lemma} \]

\[S_{\Sigma_i}(\mathfrak{A}) = \bigcap_{j=1}^{m} \mathfrak{p}_j \]

is isolated; and the claim follows. \(\blacksquare \)