Lecture 10: Integral extension Friday, April 20, 2018 10:41 PM Proposition Suppose B/A is an integral extension. @ For lodB, A/1c → B/2 is integral. S⁻¹A ⊂ S⁻¹B is integral, where S⊆ A is multip. closed. <u>Pf.</u> @ For beB, suppose $b^n + a_{n-1}b^{n-1} + \dots + a_0 = 0$ for a et . And let π: B→ B/y be the natural quotient map. Then $\pi(b)^{n} + \pi(a_{n-1}) \pi(b) + \dots + \pi(a_{n}) = 0; \text{ and claim follows.}$ $\bigcirc For \quad \frac{b}{s} \in S^{-1}B, \text{ suppose } b^n + a_n, \quad b^{n-1} + \dots + a_s = o \text{ for } a_i \in A.$ Then $\left(\frac{b}{S}\right)^{n} + \left(\frac{a_{n-1}}{S}\right) \left(\frac{b}{S}\right)^{n-1} + \dots + \left(\frac{a_{o}}{S^{n}}\right) = o$ and $\frac{a_{i}}{S^{n-i}} \in S^{-1}A$. Proposition. Suppose B/A is a ring extension, and C is the integral closure of A in B. For a multiplicative subset S of A, $S^{-1}C$ is the integral closure of $S^{-1}A$ in $S^{-1}B$. 74. We have already proved that 5¹C/S1A is integral. Suppose b_{s} is integral over $S^{-4}A$. Then $\left(\frac{b}{s}\right)^{n} + \left(\frac{a_{n-1}}{s_{n-1}}\right)\left(\frac{b}{s}\right)^{n-1} + \dots + \left(\frac{a_{0}}{s_{0}}\right) = 0$ Let $S' := S_0 \cdot S_1 \cdot \dots \cdot S_{n-1} \cdot S_n$ $(5'b)^{n} + \frac{5'}{S_{n-1}} \cdot S \cdot a_{n-1} (5'b)^{n-1} + \dots + \frac{(5')^{n-1}}{S_{i}} \cdot S^{n-1} \cdot a_{i} \cdot (5'b)^{i} + \dots + \frac{(5')^{n}}{S_{o}} \cdot Sa_{i} = 0,$

Lecture 10: Being integrally closed is a local property
Theodoy, April 24, 2018 9:21 AM
cohich implies 5 b is integral over A, and so 5 b = c e C.
Hence
$$\frac{b}{S} = \frac{s'b}{s's} = \frac{c}{s's} \in S^4C$$
.
Corollary. Suppose A is an integral domain. Then TFAE:
(a) A is integral closed.
(b) $\forall r \phi \in Spec(A)$, A_{tp} is integrally closed.
(c) $\forall th \in Hox(A)$, A_{tp} is integrally closed.
(c) $\forall th \in Hox(A)$, A_{tp} is integrally closed.
(c) $\forall th \in Hox(A)$, A_{tp} is integrally closed.
(c) $\forall th \in Hox(A)$, A_{tp} is integrally closed.
(c) $\forall th \in Hox(A)$, A_{tp} is integrally closed.
(c) $\forall th \in Hox(A)$, A_{tp} is integrally closed.
(c) $\forall th \in Hox(A)$, A_{tp} is integrally closed.
(c) $\forall th \in Hox(A)$, A_{tp} is integrally closed.
(c) $\forall th \in Hox(A)$, A_{tp} is integral closure of A. Then by
assumption the integral closure of A in k is A. And so the
(integral closure of A_{tp} in $S_{tp}^{d} k = k$ is A_{tp} ; cloim follows.
(c) \Rightarrow (c) Let C be the integral closure of A in k. Then
 $S_{tp}^{-1} C = S_{tp}^{-1} A$ for any the Max(A). And so
 $S_{tp}^{-1} (C/A) = 0$ for any the Max(A); this implies $C/A = 0$, and
 $A = C$.

Lecture 10: Integral extension and fields

Monday, April 23, 2018 12:31 AM

Lemma. Suppose B_A is an integral extension, and Bis an integral domain. Then A is a field \Leftrightarrow B is a field. Rf (=>) Y be B, A [b] is a finite-dimensional A-algebra. Let ly: A[b] - A[b] lb(v) = bv. Then ly is an inject. A_linear map; so, as dim ALDITAD, lb is surjective. And so $\exists b', b_1(b')=1 \Rightarrow b \in B' \Rightarrow B is a field.$ $(=) \forall a \in A, \exists a^{-1} \in B; as B_{A} is integral, \exists a_{o}, \dots, a_{n-1} \in A s:t.$ $(a^n) + a_{n-1}(a^{n+1}) + \dots + a_n = 0$, which implies $\alpha^{-1} = - (\alpha_{n-1} + \alpha_{n-2} \cdot \alpha + \dots + \alpha_{n-1} \cdot \alpha^{n-1}) \in A \cdot A$ Cor. Suppose f: AC, B is integral. Then $f^{*}(qt) \in Max A \iff qt \in Max B$. Pf. Ay B/qu is integral and B/qu is an integral domain.

Lecture 10: Integral extension, maximal ideals, fibers
Thursday, April 19, 2018 LDSS PM
Proposition . A. A
$$\rightarrow$$
 B integral implies f^{*} Spec(B) \rightarrow Spec(A) is onto.
If: For the Spec (A), let $S_{p} := A \setminus p$. Then $A_{p} = \rightarrow S_{p}^{-1}B$ is integral.
And so f_{p}^{*} (Max $S_{p}^{-4}B$) \subseteq Max $A_{p} = g_{S}^{-1}p_{S}^{-1}q_{S}$. So
 $\exists q \in$ Spec B s.t. $q \cap S_{p} = \emptyset$ and $S_{p}^{-4}q \cap A_{p} = S_{p}^{-1}p_{S}^{-1}q_{S}^{-1}$.
And so $q \cap A \subseteq p$ and $q \supseteq p_{j}$; which implies $f^{*}(q) = q^{C} = q_{S}$.
 q°