Lecture 11: Integral morphisms are closed

Tuesday, April 24, 2018 10:58 PM

At the end of the previous lecture we proved: Theorem. Suppose f: AC, B is integral. Then f. Spec(B) - Spec(A) is onto. <u>Pf</u>. For pe Spec A, let Sp:= Axp. Then Ay C Sp B is integral. And so f_{μ}^{*} (Max $S_{\mu}^{1}B) \subseteq Max A_{\mu} = \frac{2}{5} S_{\mu}^{-1} \mu \frac{2}{5}$. Hence $\exists q \in Spec B \quad st. \quad q \cap S_p = \varphi \quad and \quad S_p^{-1}q \cap S_p^{-1}A = \tilde{S}_p^{-1}Rp .$ Therefore $q_{nA} \subseteq p_{p}$ and $p \subseteq q_{r}$. Thus $f^{*}(q_{r}) = p_{r}$. Corollary. Suppose f. AC, B is integral. Then f (Max B) = Max A. Pf. We have already proved that $f(Max B) \subseteq Max A$, and (f*)-1 (Max A) Max B. So claim follows from surjectivity of f. Corollary . Suppose AC+ B is integral. Then f: Spec B _ Spec A is a closed map. $\underline{Pf} \cdot \underline{Chim} \cdot f^*(\nabla(h)) = \nabla(h^c);$ let f: A/10 - B/2. Then f Spec $B_{I_{b}} \longrightarrow V(b)$ $\overline{f}^{*} \downarrow \qquad \widehat{f}^{*} \downarrow$ is integral and so \overline{P}^* is onto. Spec A42 → V(25) On the other hand, we have

Lecture 11: Going-Up theorem and fibers
Tweaday, April 24, 2018 11:40 PM
Theorem (Going-Up theorem) Suppose
$$f: A_{C \rightarrow B}$$
 is integral,
 $P_{0} \subsetneq P_{1} \subsetneq \dots \subsetneq P_{n}$ is a chain in Spec A, and $q_{0} \lneq \dots \lneq q_{n}$ is a
chain is Spec B such that $f^{*}(q_{1}) = P_{1}$. Then $\exists q_{1} \lneq \dots \lneq q_{n}$
in Spec B such that $f^{*}(q_{1}) = P_{1}$.
 P_{1} : We proceed by induction on m. The case $m = -1$ is a conseq.
of surjectivity of f^{*} . To prove the induction step, it is enough
to prove the case of $m = 0$: $f^{*}(q_{1}) = P_{0}$ and $P_{1} \in Vap_{0}$.
Then by the previous carollary $f^{*}(V(q_{0})) = Vap_{0}$, and so
 $\exists q_{1} \in V(q_{1})$ st. $f^{*}(q_{1}) = P_{1}$; and claim follows. \blacksquare
Next we shaw dimension of any fiber $(f^{*})^{-1}(q_{0})$ is zero:
Theorem. Suppose $f: A \longrightarrow B$ is integral, and for $q_{1} \subseteq q_{2}^{*} \in Spec B$,
 $f^{*}(q_{1}) = f^{*}(q_{2}^{*}) = P_{0}$. Then $q_{1}^{*} = q_{2}^{*}$.
 P_{1}^{*} . Since $A \subseteq B$ is integral, $A_{le} \subseteq B_{lep}$, is integral. So $w \log q$.
 $which implies f^{*}(q_{1}) = P_{1}^{*}$. \blacksquare

Lecture 11: Integral extension and dimension Tuesday, April 24, 2018 11:25 PM Theorem . Suppose $A \subset B$ is integral. Then dim $A = \dim B$. $\mathbb{P}_{f} \cdot \mathbb{S}_{uppose} \xrightarrow{\mathcal{O}_{f}} \widehat{\varphi} \cdots \xrightarrow{\mathcal{O}_{f}} \overline{\varphi}_{m}$ is a chain in Spec B. Since fibers have dimension zero, $f^*(q_0^*) \subsetneq \dots \subsetneq f^*(q_m^*)$. Therefore dim $B \le \dim A$ • Suppose 19, q... q. fp is a chain in Spec A. Then by Going-Up theorem $\exists q \not\subseteq \dots \not\subseteq q_m$ in Spec B. And so dim $A \leq \dim B$; and claim follows. M Next we will show under extra assumption an integral morphism is open as well (as closed). We need some auxiliary results. Def. Suppose B/A is a ring extension, and Dr JA. Then be B is called integral over or if I a; E Dr. s.t. $b_{+}^{n}a_{n-1}b_{+}^{n-1}\cdots + a_{\sigma} = 0$. Lemma. Suppose B/A is a ring extension, and OIAA. Let C be the integral closure of A in B. Then $b \in B$ is integral over π if and only if $b \in \sqrt{Dt^e}$ where Dt^e is the extension of Dt in C. $\underline{PF} \xrightarrow{(\Rightarrow)}$ Since b is integral over DL, bec and b+a_{n-1}b+...+a_n=0

Lecture 11: Integral over an ideal
Tuesday, April 24, 2018 1142 PM
for some
$$a_0, ..., a_{n-1} \in \mathbb{R}$$
. Hence
 $b^n = -a_{n-1} b^{n-1} - ... - a_1 b - a_0 \in \mathbb{T}^E$;
and so $b \in \sqrt{\mathbb{R}^E}$.
(a) Suppose $b \in \sqrt{\mathbb{R}^E}$. So $b^n = a_1c_1 + ... + a_nc_m$ for some
 $a_1 \in \mathbb{R}$ and $c_1 \in \mathbb{C}$. Let $M := A Ec_1, ..., c_m I$. Since c_1 's are
integral over A , M is a f.g. A -module.
 $b^n M = \sum_{i=1}^{m} a_i c_i M \subseteq \mathbb{R}M$; $b_{10} \in \mathbb{E}nd_A(M)$
 $\exists a_0', ..., a_{3-1}' \in \mathbb{R}$, $(b^n)^{3-1} + ... + a_0' = 0$ and $a_1' \in \mathbb{R}^d$.
Therefore b is integral over \mathbb{R} .
 $E = \frac{Corollary}{16}$. If b and b' are integral over \mathbb{R} .