Lecture 13: Going-Down theorem: 2nd proof Friday, April 27, 2018 2:04 PM Theorem. . A: integral domain, integrally closed, with field of fract. F. E/+: normal field extension. B: integral closure of A in E. (f:ACB) $\Rightarrow \forall ip \in Spec(A), Aut(\mathbb{F}_{+}) \cap (f^{*})^{-1}(ip) \text{ transitively}.$ We proved that $\operatorname{Aut}(E/F) \cap B$ and $(f^*)^{-1}(P)$. Let $F'_{=} E$. Then $E/_{F'}$ is Galois and F'_{F} is purely inseparable. To see the second part, notice that since $E_{/F}$ is normal, $Aut(E_{4})$ acts transitively on zeros of $min(\alpha; F)$. And so for $x \in Fix(G)$, $g[X:=Min(x; F) = (X-\alpha)^m$ for some m. If char F=o, then Fix(G)=F. If chevr(F)=p>o and m=plk, then $g(x) = (x^{pl} - \alpha^{pl}) \in F[x]$. And so $h(x) = x^{pl} - \alpha^{pl} \in F[x]$ and α is a zero of hox). Hence h(x) = g(x); thus $(y_a)^k = y_a^k x_a^{k-1}$ which implies k=1 as otherwise the LHS has multiple zeros, but the RHS does not. Let A be the integral closure of A in Fix(G). Then Exp'e Spec A' s.t. $p' \cap A = ip$. $\forall \alpha \in p'$, $\alpha \in A$ for some $m \in \mathbb{Z}^{2^0}$. Hence

Lecture 13: Going-Down Theorem: 2nd proof Sunday, April 29, 2018 $\forall \alpha \in \psi$, $\alpha \in \psi$ for some $m \in \mathbb{Z}^2$. Let ip:= {aeA / Im E Z2, a EAS. Claim. He Spec A' and HA=4. $\frac{Pf}{f} \xrightarrow{claim.} \cdot \alpha_{1}, \alpha_{2} \in \mathcal{H} \Longrightarrow \exists m_{1}, \alpha_{1} \in \mathcal{H} \text{ Let } m \text{ be}$ $\max \mathfrak{Z}_{m_1, m_2} \mathfrak{Z} \cdot \operatorname{Then} (\mathfrak{A}_1 + \mathfrak{A}_2) = \mathfrak{A}_1^{p_1} + \mathfrak{A}_2^{p_2} \in \mathfrak{P} \cdot$ • $\alpha \in A'$, $\beta \in \mathcal{P} \implies \exists m \in \mathbb{Z}^{2^{\circ}}$, $\alpha' \in F$ and $\beta' \in \mathcal{P}$ Since α is integral over A and A is integrally closed, $\alpha^{p} \in A$. Hence $(\alpha \beta) = \alpha^{p} \beta^{p} \in \mathcal{B}$. And so $\alpha \beta \in \mathcal{B}$. • $\alpha_1 \alpha_2 \in \mathcal{H}$ for $\alpha_i \in \mathcal{A}' \Rightarrow \exists m_i \text{ st. } \alpha_i \in \mathcal{F}$. Since α_i is integral over A and A is integrally closed, $\alpha_i^{p_i} \in A \implies \alpha_i^{p_i} \in A$ for $m \ge \max \{m_1, m_2\}$. And so $\exists m_1 \in A$ $(\alpha_1 \alpha_2) \in \mathbb{R}^p$ and $(\alpha_1)^p \in A$. As up is prime, either $\alpha_1 \in \mathbb{R}^p$ or $\alpha_2^{pm} \in p$. Hence either $\alpha_1 \in p$ or $\alpha_2 \in p$. · depr A => dep => dep . I Hence there is only DESpec A' that is over up.

Lecture 13: Going-Down theorem: 2nd proof
Monday, April 30, 2018 252 PM
Hence, as And(
$$E/_{\mp}$$
) = And ($E/_{\mp'}$), after changing A with A' and up
with bp , we can and will assume $E/_{\mp}$ is a Galois extension.
Notice that if char(F)=0, then $F=F'$ and the above argue is not needed
Gene 1. $[E:F]<\infty$ and Galois.
TH: Suppose to the contrary that $\exists q'_{a} \in \binom{p}{2} \pmod{p} \setminus \operatorname{Gal}(E/_{\mp}) \cdot q'_{\pm}$.
Since dim. of $\binom{p}{2} q_{\mp}$ is zero, $q'_{a} \neq \circ(cq'_{\pm}) \lor \operatorname{Gal}(E/_{\mp}) \cdot q'_{\pm}$.
Since dim. of $\binom{p}{2} q_{\mp}$ is zero, $q'_{a} \neq \circ(cq'_{\pm}) \lor \operatorname{Gal}(E/_{\mp}) \cdot q'_{\pm}$.
As $|G_{el}(E/_{\mp})| <\infty$, $q'_{a} \notin \bigcup \bigoplus (cq'_{\pm}) \cdot \operatorname{Suppose} \propto eq_{-1} \bigcup o(cq'_{\pm})$
Then II $\circ(\omega) \in F$. At the some time $\circ(\omega) \in B$ ($\forall \circ$)
 $\circ \in \operatorname{Gal}(E/_{\mp})$
and $\alpha \in \operatorname{Cq}_{2}$; and so $\operatorname{N}_{E/_{\mp}}(\omega)$ is integral over A and in q'_{\pm} . As
A is integrally closed, we chalce $\operatorname{N}_{E/_{\mp}}(\omega) \in \operatorname{An} q'_{\pm} = ep$.
 $\Rightarrow II = \circ(\omega) \in ep \subseteq q'_{\pm} \Rightarrow \circ(\omega) = eq'_{\pm}$ for some or
 $\circ \in \operatorname{Gal}(E/_{\mp})$
 $\Rightarrow \alpha \in \operatorname{O^{-1}}(q'_{\pm})$ for some or, which is a contradiction.
 $\operatorname{Gase 2}$. The general case.
 $\exists E_{i} \subseteq E$, $i \in I$ s.t. (1) $E_{i/_{\mp}}$ finite Gabits
(2) $\forall i, j$, $\exists k$ s.t. $E_{k} \supseteq E_{i} \cup E_{j}$ (3) $E = \bigcup E_{i}$.

Lecture 13: Going-Down theorem; 2nd proof
Monday, April 22, 2018 1252 AM
For
$$q_{1}$$
, $q_{2}^{i} \in Spec(B)$ s.t. $q_{1} \cap A = d_{2}^{i} \cap A \pm d_{2}^{i} \cap A \oplus d_{2}^{i} \cap A$

Lecture 13: Going-Down theorem: 2nd proof Monday, April 30, 2018 2:49 PM $\sigma(\mathcal{F}) \cap A = \mathcal{F}_{\mathcal{F}} \cap A = \mathcal{F}_{\mathcal{F}}$. Hence $\varphi := B \cap \sigma(\mathcal{F}_{\mathcal{F}}) \subseteq \varphi_{\mathcal{I}}, \varphi \in Spec B$ and $q_n \land A = q_n$.