Lecture 14: Integral+integrally closed => open Friday, April 20, 2018 12:13 AM Theorem. A: integral domain, integrally closed B: integral domain, f: A B integral injection \Rightarrow f^* : Spec B \rightarrow Spec A is open. In fact, for be B, suppose min $(\mathbf{b}; F) := x^n + a_{n-1}x^{n-1} + \dots + a_{0}$. Then $f^*(D(b)) = \bigcup_{i=a}^{n-1} D(a_i) = \operatorname{Spec} A \setminus V(a_0, a_1, \dots, a_{n-1})$. <u>Pf.</u> Suppose $f^*(q_i) \notin \bigcup_{i=0}^{n-1} D(a_i)$ for some $q_i \in D(b_i)$. So $a_i \in p_i$, which implies b is integral over up. Hence $b \in \sqrt{up^e} \subseteq q$, which implies $\alpha \notin D(b)$; this is a contradiction. • For $p \in \bigcup_{i=0}^{n-1} D(a_i)$, Suppose $(f^*)^{-1}(p) \cap D(b) = \emptyset$. Let F be the field of fractions of A, E be the field of fractions of B, and K be the normal closure of E over F. Let C be the integral closure of A in K, and g: A _ C. Then @ implies $(g^*)^{-1}(p) \cap D(b) = \emptyset$. Let $\mathfrak{P} \in (g^*)^{-1}(p)$. Hence $\forall \sigma \in \operatorname{Aut}(K/_{\mathbb{F}})$, be O(B); which implies VoreAut(K/F), or b)ers. Hence all the zeros of min(b; E) are in \$. This implies a EANS= to which is a contradiction.

Lecture 14: Integral closure; Noetherian; separablity
Friday, April 27, 2018 BADAM
Next are avoid linke to extend the Noetherian property to certain
integral extensions:
Proposition. A: Integral domain, integrally closed;
F: field of fractions of A;
E/F: separable finite field extension;
B: the integral closure of A in E;

$$\Rightarrow \exists e_1, ..., e_n \in E$$
 st. $B \subseteq Ae_1 + ... + Aen$.
In particular, if A is Noetherian, then B is Noetherian.
We start with a lemma from field theory:
Lemma. Let E/F be a finite separable field extension. For any
 $e \in E$, let $d_e \in End_F(E)$, $d_e(e') = ee'$. Then, over \overline{F} , d_e is
similar to diag ($\sigma_1(e), ..., \sigma_n(e)$) where $\delta \sigma_1, ..., \sigma_n S = Hom_F(E, \overline{F})$.
In particular, tr $(d_e) = \sum \sigma_1(e)$ and $det(d_e) = \prod \sigma_1(e)$.
Ph. Since E/F is a finite separable extension, $\exists a \in E$ st.
 $E = FIXI \cong FIXI/(\min(\alpha', F))$; and $\min(\alpha', F) = (\alpha - \alpha_1) \cdots (\alpha - \alpha_j)$
where $\alpha_1 + \alpha_j \in \overline{F}$ (and $\alpha_1 = \alpha$). Hence $E \otimes_F \overline{F} \cong \overline{FIX}/(\prod (\alpha - \alpha'_1))^{-1}$

Lecture 14: Separablity and trace
Monday, April 30, 2018 B.46 AM
And by the Chinese Remainder Theorem,
$$\mathbb{E}_{\Phi} \overline{F} \simeq \bigcap_{i=1}^{\Phi} \overline{F} \mathbb{IX}]_{\langle X_{i} = q_{i} \rangle}$$

 $\Rightarrow \mathbb{E}_{\Phi} \overline{F} \simeq \bigcap_{i=1}^{\Phi} \overline{F}$; and so $e \otimes 1 \mapsto (O_{2}(e), ..., O_{n}(e))$.
 $\alpha \otimes 1 \mapsto (\alpha_{1}, ..., \alpha_{n})$
Therefore $l_{e} \otimes id$ in the standard basis of $\bigoplus_{i=1}^{\Phi} \overline{F}$ is
diag $(O_{1}(e_{1}), ..., O_{n}(e))$. And claim follows.
Proposition. Suppose $E/_{\overline{F}}$ is a finite separable field extension.
Yee E, let $T_{E/_{\overline{F}}}(e) := tr(l_{e})$. Let $f: E_{X}E \rightarrow F$,
 $f(e_{1}, e_{2}) := T_{E/_{\overline{F}}}(e_{1}e_{2})$. Then f is a non-degenerate
bilinear form.
P. Since $T_{E/_{\overline{F}}} : E \rightarrow F$ is \overline{F} -linear, f is a bilinear form.
To shace it is non-degenerate one has to take an \overline{F} - basis
 $\frac{1}{2}e_{1},...,e_{n}S$ of \overline{E} and show det $[f(e_{i},e_{j})] \neq 0$.
 $f(e_{i},e_{j}) = T_{E/_{\overline{F}}}(e_{i}e_{j}) = \sum_{k=1}^{n} O_{k}(e_{i}e_{j})$ by the previous
lemma where $\frac{1}{2}O_{1},...,O_{n}S = Hom_{\overline{F}}(\overline{E},\overline{F})$. Hence
 $If(e_{i},e_{j})I = [\sum_{k=1}^{n} O_{k}(e_{i}) O_{k}(e_{j})] = [O_{j}(e_{i})I [O_{j}(e_{i})]^{T}$. And so

Lecture 14: Field of fractions of integral closure
Wednesday, May 2, 2018 12.08 AM
det [free; , e.g.] = det([o; (e;)][o; (e;)][†]) = det([o; (e;)])².
As in the proof of the previous lemma

$$E \mathfrak{s}_{\mp} \mp \rightarrow \bigoplus_{i=1}^{\infty} \mp$$
, e & 1 \mapsto (O(e), ..., On (e))
is an \mp - isomorphism. Hence
(O((e_1), ..., On (e_1)), (O((e_2))..., On (e_2)), ..., (O((e_n), ..., On (e_n)))
are \mp - linearly independent as
 $E = \bigoplus_{i=1}^{\infty} \mp e_i$ implies $E \mathfrak{s}_{\mp} \mp = \bigoplus_{i=1}^{\infty} (e_i \otimes \mp)$.
And so det $[O_j(e_i)] \neq 0$.
 $\frac{Lemma}{2}$. Suppose \mp is the field of fractions of A and $E/_{\mp}$
is an algebraic extension. Let B be the integral closure of A in E .
Then $E = (A \times 303)^{-1}B$.
(We call prove this in the next lecture.)