In the previous lecture we proved the following technical theorem:

\[\Omega: \text{algebraically closed field}; \]
\[A_0: \text{subring of a field } F; \quad \phi: A_0 \to \Omega \quad \text{ring hom.}; \]
\[\Sigma := \{ (A, \phi) \mid A_0 \subseteq A \subseteq F; \quad A \xrightarrow{\phi} \Omega \} \quad \text{subring} \]
\[(A_1, \phi_1) \preceq (A_2, \phi_2) \quad \text{if} \quad A_1 \subseteq A_2 \quad \text{and} \quad \phi_2 \mid_{A_1} = \phi_1. \]

Then \(\Sigma \) has a maximal element; if \((B, \theta) \) is maximal in \(\Sigma \), then \(B \) is a valuation ring, its field of fractions is \(F \), and \(\ker \theta \) is the maximal ideal of \(B \).

Proposition. Let \(A \) be an integral domain with field of fractions \(F \).

The integral closure of \(A \) in \(F \) is:

\[\text{integral closure of } A \text{ in } F = \bigcap_{A \subseteq B \subseteq F \atop B \text{ valuation ring}} B \]

Proof. Since any valuation ring is integrally closed and by the tech. theorem \(\exists A \subseteq B \subseteq F \), \(B \) is a valuation ring, \(\text{RHS} \subseteq \text{LHS} \).

- Suppose \(f \in F \) is not integral over \(A \). So \(f \notin A[f^{-1}] \); this implies \(\exists \delta \in \text{Max} (A[f^{-1}]) \text{ s.t. } f^{-1} \notin \delta \). Let \(\Omega \) be an alg.
Lecture 17: Lifting ring homomorphisms

Monday, May 7, 2018 8:35 AM

closure of $A\ell_f^{\downarrow}/_{\text{fin}}$, and $A\ell_f^{\downarrow}/_{\text{fin}} \twoheadrightarrow A\ell_f^{\downarrow}/_{\text{fin}} \twoheadrightarrow \Omega$. \\

Then by the technical theorem \exists a valuation ring B and $\theta : B \rightarrow \Omega$ st. $A\ell_f^{\downarrow} \subseteq B$ and $\ker \theta \supseteq \text{fin} \cap f$. \\

Hence $f \notin B$. \blacksquare

The 2$^{\text{nd}}$ important consequence of the technical theorem is:

Theorem. A : integral domain \\
B : integral domain, i.e. A -alg. ; $A \subseteq B$. \\
$b_0 \in B \setminus \Omega$. \\

$\Rightarrow \exists a_o := a_0 (b_0) \in A$ st. $\forall \phi \in \text{Hom}(A, \Omega), \phi (a_o) \neq 0$ \\

$\exists \theta \in \text{Hom}(B, \Omega)$ st. $\theta|_A = \phi$ and $\theta(b_0) \neq 0$.

Proof. We proceed by induction on the number of generators of B as an A-algebra. So it is enough to prove the case $B = A\ell_f^{\downarrow}$.

Case 1. β is transcendental over A.

Then $b_0 = c_n \beta^n + c_{n-1} \beta^{n-1} + \cdots + c_0$ where $c_i \in A$. Let $a_o := c_n$. \\

\[\text{proof continued...} \]
Then \(\phi(c_n) t^n + \phi(c_{n-1}) t^{n-1} + \cdots + \phi(c_0) \) is a non-zero poly. in \(\Omega[H] \) if \(\phi(c_0) \neq 0 \). As \(|\Omega| = \omega \), \(\exists \alpha_0 \in \Omega \) which is not a zero of this poly. Then

\[
\theta \left(\sum d_i \beta^i \right) := \sum \phi(d_i) \alpha_i^j \text{ satisfies the needed conditions.}
\]

Case 2. \(\beta \) is algebraic over \(A \).

Then \(B = A[\beta] / A \) is algebraic. So \(\exists a_i' \) and \(a_i'' \in A \) s.t.

\[
(\text{I}) \quad a_n' \beta^n + a_{n-1}' \beta^{n-1} + \cdots + a_0' = 0 \quad \text{and}
\]

\[
(\text{II}) \quad a_m'' b_m^{-m} + a_{m-1}' b_m^{-(m-1)} + \cdots + a_0'' = 0.
\]

Let \(a_0 := a_n' a_m'' \). If \(\phi(a_n' a_m'') \neq 0 \) for some \(\phi : A \to \Omega \), then \(\phi \) has a lift \(\hat{\phi} : A[\frac{1}{a_n' a_m''}] \to \Omega \).

Consider \(A[\frac{1}{a_n' a_m''}] \) as a subring of the field \(E \) of fractions of \(B \), and use the technical theorem to deduce:

\(\exists \) a valuation ring \(C \) with field of fractions \(E \), and a lift

\[
\hat{\phi} : C \to \Omega \text{ of } \hat{\phi}.
\]

By (I) and (II), \(\beta \) and \(b_m^{-1} \) are integral over \(A[\frac{1}{a_n' a_m''}] \). And so
p and b_0 are integral over C. Since C is integrally closed, $p, b_0 \in C$.

\Rightarrow (1) $B \subseteq C$ (2) $b_0 \in C^x \Rightarrow \phi|_B : B \to \Omega$ is a lift of ϕ and $\phi(b_0) \neq 0$.

Theorem (1st version of Hilbert’s Nullstellensatz)

k: field. B: f.g. k-algebra.

If B is a field, then B/k is a finite extension.

Pf. Let Ω be an algebraic closure of k, and $\phi : k[C] \to \Omega$ be an embedding. Let $b_0 = 1$. Then $\exists a_0 \in k$ s.t. if $\phi(a_0) \neq 0$,

then ϕ has a lift $\hat{\phi} : B \to \Omega$. But, since ϕ is an embedding, $\phi(a_0) \neq 0$. So \exists a lift $\hat{\phi} : B \to \Omega$ of $\phi : k[C] \to \Omega$.

Since B is a field, $\hat{\phi}$ is an embedding. And so B/k is an algebraic extension. Since B is a f.g. k-algebra,

B/k is a finite extension.