Lecture 24: DVR Monday, May 28, 2018 10:22 PM <u>Recall</u>. In the previous lecture we proved the following important theorem: <u>Theorem</u> A: Integral domain, Noetherian, dim A=1, Max A= $\frac{1}{2}$ HTV3. TFAE: (1) A is integrally closed (2) the is principal (3) $\dim_{k(m_1)} \frac{11}{m^2} = 1$ where $k(ttr) := A/_{ttr}$. (4) For any $0 \neq \pi \triangleleft A$, $\exists i$, $\pi = \pi i$. (5) ∃π st. ∀o≠Ω⊈A, ∃i, Ω=<π'>. (6) ∃ V: F→ZUZ∞S st. .V(x)=∞↔ x=0 $\cdot \mathcal{V}(\alpha_1 \prec_2) = \mathcal{V}(\alpha_1) + \mathcal{V}(\alpha_2)$ (Discrete Valuation Ring) $V(\alpha_1 + \alpha_2) \ge \min\{V(\alpha_1), V(\alpha_2)\}$ (F: field of frac. of A) ·aeA ↔ v(a) > · · Next we will see the global analogue of this statement. Theorem. A: integral domain, Noetherian, dim A = 1. TFAE: (1) A : integrally closed (2) A_{HH} : DVR, V-HreMax A (3) $q \triangleleft A$ primary $\iff q = xp^n$ for some $xp \in Spec A$.

Lecture 24: Dedekind domains Friday, May 25, 2018 8:54 AM <u>Def</u>. A ring that satisfies the above properties is called a Dedekind Domain. <u>Cor</u>. Suppose Q_k is the ning of integers of a number field. Then O_k is a Dedekind domain; and so $\forall b \neq D \land \downarrow D$, $U = \prod_{\text{the Mox } D} U_{\text{the Mox } D}$ and $V_{\text{the Mox } D} = 0$ except for finitely many the. [k:@] Pf... We have already proved that $O_k \simeq \mathbb{Z}$ as an abelian group and in particular it is Noetherian; . Q is the integral closure of \mathbb{Z} in k; hence it is integrally closed; and dim $O_{\mathbf{k}} = \dim \mathbb{Z} = 1$. . By the 2nd uniqueness theorem, DC has a unique reduced primary decomposition. Since Q is Dedekind, any primary ideal is a power of a prime ideal. Since $D \neq \sigma$, $Ass(D) \subseteq Max(O_k)$. For $ttr \in Max(Q_k)$, $ttr \neq ttr^2 \neq \dots$; and so by the Chinese Remainder Theorem claim follows.

Lecture 24: Dedekind domain Monday, May 28, 2018 10:48 PM Pf of Theorem. . A: integrally closed => VIII Max A, Ann is integrally closed. A: Noeth, dim A=1 -> dim A == 1 and A++ Noeth. Hence App is a DVR. • $q^{r} \neq o$ primary $\Rightarrow \sqrt{q^{r}} = 111 \in Max A$ as dim A = 1; and qt is the primary \Rightarrow qt = the A the for some ne Zt $q^{\mu} = 111^{n}$. Any non-zero ideal \widetilde{D}_{i} of A_{μ} is μA_{μ} - primary; and so $\exists \varphi \triangleleft A$ q: 111-primary and $\widetilde{Di} = qr$. By assumption $T_{i} = 111^{n}$; hence DE=(111 A In)". Therefore A Is a DVR. This implies App is integrally closed for any 1126 Max A. Hence A is integrally closed. As we have seen before O is not necessarily a PID. Next we want to have a way of saying how "badly" Ok is faily of being a PID.

Lecture 24: Class group
Monday, May 28, 2013 11:50 PM
Def. A: integral domain; F: Field of Fractions;
Troc(A) :=
$$EM \subseteq F \mid M : A$$
-submod; M=o;q
Trin(A) := $EM \subseteq F \mid M : A$ -submod; M=o;q
Trin(A) := $EM \subseteq F \mid M : A$ -submod; M=o;q
Trin(A) := $EM \subseteq F \mid A \subseteq F^{X}$
Lemma . M₁, M₂ \in Frac(A) \Rightarrow M₁M₂ \in Frac(A),
cohere M₂M₂ $= \sum Am_{1}m_{2}$.
. Me Frac(A) \Rightarrow M.A=AM=M.
. Me Frac(A) \Rightarrow M.A=AM=M.
. (Prin(A), .) S a group.
The Clear.
Lemma . For MeFrac(A), (A:M)= $EaeF \mid aM \subseteq AE \in Frac(A)$,
and M has an inverse in Frac(A) if and only if (A:M)M=A.
Phi₂ \neq (A:M) is a submodule of F and, for $B \in M \setminus EeS$,
 $B(A:M) \subseteq A;$ and so (A:M) \in Frac(A).
. If (A:M)M=A, then M is invertible in Frac(A) by definition.
. If MM=A for some M \in Frac(A), then M \leq (A:M); and so
 $A \subseteq (A:M)M \subseteq A;$ and claim folloces.

Lecture 24: Class group
Tuesday, May 29, 2028 12.14 AM
Proposition. TFAE. (1) MeFrac (A) is invertible.
(2) M is f.g. and Vape Spec (A), May Frac (Agp) is invertible.
(3) M is f.g. and Vatter Max (A), May Frac (Agp) is invertible.
(4) M is f.g. and Vatter Max (A), May Frac (Agp) is invertible.
(5) M is f.g. and Vatter Max (A), May Frac (Agp) is invertible.
(6) M is f.g. and Vatter Max (A), May Frac (Agp) is invertible.
(7) M is f.g. and Vatter Max (A), May Frac (Agp) is invertible.
(9)
$$\Rightarrow$$
 (2), MM'=A implies $\exists m_i \in M, m_i' \in M' \text{ st. } \sum_{i=1}^{k} m_i m_i' = 1.$
Then, for any $x \in M$, $x = x \cdot 1 = \sum_{i=1}^{n} (x m_i') m_i \in \langle m_1, ..., m_k \rangle$.
And so $M = \langle m_1, ..., m_k \rangle$ is a f.g. A-mod.
(2) \Rightarrow (3) is clear.
(3) \Rightarrow (1) To show (A:M)M=A, it is enough to show for any
the Max A, (A:M)M_{HP}=A_{HP}. It is clear that (A:M)M_{HP}=
(A:M)_{HP} M_{HP}. Cle also have
($\hat{G}_{HP}:M_{HP}) = \{x \in F \mid x M_{HP} \subseteq A_{HP}\} = \{x \in F \mid x M \subseteq A_{HP}\} = \{x \in F \mid x_1, ..., x_k \in A_{HP}\} = \{x \in F \mid x_1, ..., x_k \in A_{HP}\}$ cohere $M = \langle x_1, ..., x_k \rangle$
 $= \{x \in F \mid x_1, ..., x_k \in A_{HP}\} = \{x \in F \mid x_1, ..., x_k \in A_{HP}\}$ for some $a_i \in A_{HP}$
 $= \{x \in F \mid \exists s \in A_{A} \in A_{HP}\}$ solve $(a_{i}:M_{HP})_{HP}$ is and claim follows. \blacksquare

Lecture 24: Class group
Tuesday, May 29, 2018 12:35 AM
Corollary. A: Dedekind domain
$$\Rightarrow$$
 all clements of Frac (A) are
invertible.
PL. A: Dedekind domain \Rightarrow VtreMax A, A_{thr} is a DVR.
and, if $\alpha M \subseteq A$, implies αM is f.g. as A is North.
And so M is f.g.
. Let N be a f.g. A_{thr}-submod of F. Suppose
N=A_{thr} $\alpha_1 + \dots + A_{thr} \alpha_k$ and $\alpha_i = u_i T^{n_i}$, $U(u_i) = 0$,
 $U(T) = 1$. Then N= A_{thr} $T^{\min(n_1,\dots,n_k)}$; and ∞
(A_{thr}:N) = $T^{\min(n_1,\dots,n_k)}$ A_{thr} which implies
(A_{thr}:N) N = A_{thr}.
Def. The class group of A is Cl(A) = Frac (A)/Prin (A)
 Gr_{-} Cl(A) = $0 \iff A$ is a PID.