Lecture 26: Krull's height theorem

Sunday, June 3, 2018

Thm (Krull's height theorem) Suppose A is Noetherian, UL=<a,...,a,>+A,

 γp is minimal in $V(\alpha)$. Then $ht(\gamma p) \leq n$.

Pf. We proceed by induction on n. The base of induction follows from Krull's Principal Ideal Theorem.

Suppose & EASS (DC) is a minimal element; and we have

to show ht (xp) $\leq n$. Notice that ht (xp) = ht (xp A_{xp}) and

pAp is a minimal element of spAp∈ Ass (O(p). So ω.l.o.g.

we can and will assume A is a local ring and spy = Max A.

Therefore V(DC) = 2xp3 as xp is both minimal and the only

maximal ideal.

Suppose $p' \subseteq p'$ is a prime ideal and there is no prime ideal between p' and p. By p, $\exists i$, $a_i \notin p'$. $\omega.L.0.G.$ are can and will assume $a_n \notin p'$. Since there is no prime between p' and p, $\nabla(\langle a_n \rangle + p') = p$. And so $\sqrt{\langle a_n \rangle + p'} = p$ thence, for any i, $\exists m_i \in \mathbb{Z}^+$, $a_i = a_n r_i + b_i$ for some $r_i \in A$

Lecture 26: Krull's height theorem

Friday, June 1, 2018 8:28 AM

p: 620 .

 \underline{Claim} . $\nabla(\langle a_n, b_1, ..., b_{n-1} \rangle) = \{ \not > \}$.

 $\underline{\mathcal{P}}$ $\langle a_n, b_1, ..., b_{n-1} \rangle \ni a_i^{m_i}$ for $1 \leq i \leq n-1 \Rightarrow a_i \in \sqrt{\langle a_n, b_1, ..., b_{n-1} \rangle}$

 $\Rightarrow \forall = \langle \langle a_1, ..., a_n \rangle \subseteq \langle \langle a_n, b_1, ..., b_{n-1} \rangle \subseteq \forall p$

Claim whis a minimal element of $V(\langle b_1,...,b_{n-1}\rangle)$.

 $\underline{\mathcal{P}\!f}. \ \, \text{Let} \ \ \, \overline{A}:=A/<b_1,...,b_{n-1}\rangle \ \ \, , \ \, \overline{\eta}':=H/<b_1,...,b_{n-1}\rangle \ \, , \ \, \text{and}$

 $\overline{8p} := \frac{1}{2} / \langle b_1, ..., b_{n-1} \rangle$. By the previous claim, $\overline{8p}$ is a minimal

element of $V(\langle \overline{a}_1 \rangle)$. Hence by Krull's PIT, $ht(\overline{p}) \leq 1$.

Since \$\overline{\pi} \in \text{Spec}(\overline{A}) and \$\overline{\pi} \in \overline{\pi}\$, (*) implies that \$\overline{\pi}\$ is

is a minimal prime; and claim follows. I

By the above claim and the induction hypothesis, ht(xp) < n-1.

Since this is true for any such of, htop) < (n-1)+1=n;

and claim follows.

Corollary. Suppose k is a field. Then dim $k[x_1,...,x_n] = n$.

Pf. Let k be an algebraic closure of k. Then k [x,...,xn] is

Lecture 26: Dimension of ring of polynomials

Friday, June 1, 2018 8:46 Al

integral over $k [x_1, ..., x_n]$. Hence dim $k [x_1, ..., x_n] = \dim k [x_1, ..., x_n]$.

We have dim $k[x_1,...,x_n] = \sup \{ kt (ttr) \mid ttreMax (k[x_1,...,x_n]) \}$

Krull's height theorem

On the other hand $0 \subsetneq \langle \chi_1 \rangle \subsetneq \langle \chi_1 \chi_2 \rangle \subsetneq ... \subsetneq \langle \chi_1 ... \chi_n \rangle$ is

a chain of length n of prime ideals. Hence $\dim \overline{k}[x_1,...,x_n] \ge n$ (II)

(I), (II) imply the claim.

Remark. The above proof implies more:

 \forall the Max (k[x₁,...,x_n]), ht(th) = n.

14. Since k[x,...,x,]/k[x,...,x,] is integral,

f. spec k[x,..,x,] - spec k[x,..,x,] is an onto finite (open

closed) map. And f* induces a bij. between maximal ideals. Suppose

fire Max & [x1, ..., xn] s.t. f*(fir)=++. Then ht (fir) = ht (fir) and by

Hilbert's Nullstellensatz and Krull's HT as above we get ht(fif)=n.

Lecture 26: Proof of Krull's PIT

Monday, June 4, 2018 8

Pf of Krull's PIT. Suppose up is a minimal element of V(<a>).

Since ht (xp)=ht(xpAxp) and xpAxp is a minimal element of V(Kax),

w.l.o.g. we can and will assume A is a local ring and Max A= & &.

Since up is minimal in V(<a>) and up is the only maximal ideal,

 $V(\langle a \rangle) = \frac{2}{5}$; and so spec $(A_{\langle a \rangle}) = \frac{2}{5}$ which implies

dim A/a> = 0; thus A/a> is a local Artinian ring.

s.t. up & Spec A. Going to A/p, we still have a local

Noetherian ring of dim ≥ 2 ; and $\nabla(\langle a \rangle + |b_6\rangle = \frac{8}{2}$.

So w.l.o.g. we can and will assume A is an integral domain.

We would like to say ht (p) = 0, which is equivalent to showing

dim Ap = 0. This happens precisely when the Ap = photo for

some n. These are of Ap - primary; and so we can work with their

contractions $9_1^{(n)} := 9_1^n A_{p_1} \land A$

We will continue next time.