Lecture 27: Proof of Krull's PIT

Monday, June 4, 2018 11:1

We were in the middle of proof of Krull's PIT:

Krull's PIT. Suppose A is Noetherian, a $\not\in A^x$, and $\not\in A$ is a minimal prime ideal of $\langle a \rangle$. Then $ht(\not\circ p) \leq 1$.

Pf. We have made a few reductions, and showed that in addition we can and will assume that A is a local integral domain with maximal ideal sp. And assumed to the contrary that of sp. fx is an intermediate prime. We would like to show: ht(p) = 0 ht(sp_) = 0 (dim App = 0 (App is Artinian () In, sp App = 1 Let xp(k) := xpk App A. Since xp App is maximal, xpk App 15 $p_1 A_{q_1} - primary$. Hence p_1 is $p_1 - primary$, and $p_1^{(1)} \supseteq p_1^{(2)} \supseteq \cdots$ Recall that V(a>) = { ip3; and so dim A/a> = 0, which implies A/(a) is Artinian. Hence $\exists n$, $\beta_1^{(n)} + \langle a \rangle = \beta_1^{(n+1)} + \langle a \rangle$. So for any $x_n \in \mathcal{H}_1^{(m)}$, $\exists x_{n+1} \in \mathcal{H}_1^{(n+1)}$ and $v_n \in A$ s.t. $x_n = x_{n+1} + v_n a$.

math200c-18-s Page 1

 $\Rightarrow \nabla_n \alpha \in \mathcal{A}_1^{(n)}$ $\forall \nabla_n \alpha \in \mathcal{A}_2^{(n)}$ $\forall \nabla_n \alpha \in \mathcal{A}_2^{(n)}$ $\forall \nabla_n \alpha \in \mathcal{A}_2^{(n)}$ $\Rightarrow \nabla_n \alpha \in \mathcal{A}_2^{(n)}$

Lecture 27: Converse of Krull's height theorem

Wednesday, June 6, 2018

As $\alpha \in \mathcal{P} = \overline{J}(A)$, by Nakayama's lemma $\mathcal{P}_{1}^{(n)} = \mathcal{P}_{1}^{(n+1)}$; and so

1921 Ap = 102 Apz, which implies 192 Apz = 192 Apz and claim

follows.

Theorem. Suppose A is Noetherian, spe Spec A, and ht(p)=d.

Then $\exists \Box = \langle a_1, ..., a_d \rangle$ s.t. up is a minimal prime in $\nabla(\Box c)$.

7. Let \$ \$ \$ \$ 1.5 ... \$ \$ be a chain of prime ideals.

Then $ht(p_i) = i$ as $ht(p_i) = ht(p_i) = d$. We prove $\exists a_1,...,a_d$ s.t.

(1) $ht(\langle a_1, ..., a_k \rangle) = k$

2) the is a minimal prime in $V(\langle a_1,...,a_k \rangle)$.

And we prove this by induction on d.

Bose of induction. Since ht mp = 1, m & U m'

(as otherwise $19_1 \subseteq 70'$ for some 10' with 1190=0) Let $a_1 ep_1 \setminus U \cdot 9'$

Since on is not in a minimal prime ideal, ht(\a_1>) > 1; and by

Krull's PIT, we deduce $ht(\langle a_1 \rangle) = 1$; and so p_1 is a minimal

prime in $V(\langle a_1 \rangle)$.

Lecture 27: Converse of Krull's height theorem

Wednesday, June 6, 2018

8:31 AM

Induction Step. Suppose a, ..., a satisfy the mentioned

conditions. Suppose sp/, ..., sp/ are minimal prime in $V(\langle a_1,...,a_{d-1}\rangle)$

By Krull's height theorem ht (p) \ d-1 and by the induction

hypothesis $ht(\langle a_1,...,a_{d-1}\rangle)=d-1$ which means min $ht(p_i')=d-1$;

and so ht tp! = d_1 for any i. Since ht tp =d, we deduce

that $p \neq \bigcup_{i=1}^{m} p_i'$. Let $a_i \in P \setminus \bigcup_{i=1}^{m} p_i'$.

Suppose sp' is a minimal prime of $\langle a_1,...,a_d \rangle$. Hence

<α1,..., α1) = p', and ∃i, p' = p'. As α εp\ p'.

p/ = p'. Since H p/=d-1, ht xp' > d. And by krull's HT

ht xb < d; and these imply ht xb = d.

As $P_d \in V(\langle a_1,...,a_d \rangle)$ and $ht p_d = d$, we deduce that

to is a minimal prime in V(<a1,...,a1>). =

Lecture 27: Dimension and number of generators

Wednesday, June 6, 2018 10:12

Theorem. Suppose A is Noetherian, and Max A = 3 th 3. Then

dim A = min d(q)
q: +++-qrimary

where d(qx) is the minimum number of generators of qx.

 $\frac{PF}{P}$. If or is 11t-primary, then $\sqrt{q} = 11t$; and $V(q) = \frac{2}{5}ttr$.

And so by Krull's HT, ht (1111) < d (ox). Hence

 $\dim A = \operatorname{ht}(Hr) \leq \min_{q: Hr-primary} d(q).$

If ht (111)=d, then by the previous theorem $\exists a_1,...,a_d$ s.t.

11/ is a minimal prime in V(<a,,..,a,). Hence

 $V(\langle a_1,...,a_l\rangle) =$ 2+11-3, which implies $\sqrt{\langle a_1,...,a_l\rangle} = 111$; and so

do:= <a,,...,a) is the primary. Hence

dim $A = ht \ ttt = d \ge d(q_0^*) \ge min \ d(q_0^*);$ $q_1^*:ttt-primary$

and claim follows. 3

Corollary. Suppose A is Noetherian and Max A = 2411/2. Then dim $A \leq \dim_{A/411} \frac{111/2}{111^2}$.

Pf. By Nakayama's lemma dim 111/412 = ol(111); and claim follows.

Lecture 27: A few remarks

Wednesday, June 6, 2018

. A local Noetherian ring A with a maximal ideal 111 is called regular

if dim A = dim HHT

For $f_1,...,f_r \in k[x_1,...,x_n]$, the ring of poly. restricted to

 $X=X(f_1,...,f_r)$ is isomorphic to $A:=k[x_1,...,x_n]/\{f_1,...,f_r\}$

Suppose $p \in X(f_1,...,f_r)$; and let's consider all the rational

functions that are defined at p and restrict them to X.

Assuming that A is an integral domain, this ring can be not

Assuming that A is an integral domain, this ring can be naturally

identified with A_{HHp} ; and it is a local from tangent plane of X at p can be identified with the dual of $W_{Hp/Hp}^2$ where W_{Hp}^2 and the regularity assumption dim W_{Hp}^2 dim W_{Hp}^2 is the same as saying that X does not have a singularity at p.

math200c-18-s Page 5