Math200c, homework 1

Golsefidy

April 2019

Algebraic closure of a finite field.

Suppose $\overline{\mathbb{F}}_p$ is an algebraic closure of \mathbb{F}_p . Let $\sigma : \overline{\mathbb{F}}_p \to \overline{\mathbb{F}}_p$, be the Frobenius map; that means $\sigma(\alpha) := \alpha^p$.

- 1. Prove that $\sigma \in \operatorname{Aut}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$.
- 2. Prove that $\{\alpha \in \overline{\mathbb{F}}_p | \sigma^n(\alpha) = \alpha\} \simeq \mathbb{F}_{p^n}$. (We will identify \mathbb{F}_{p^n} with this set of fixed points of σ^n .)
- 3. Prove that $\operatorname{Aut}(\mathbb{F}_{p^n}/\mathbb{F}_p) = \langle r_{\mathbb{F}_{p^n}}(\sigma) \rangle$ where $r_{\mathbb{F}_{p^n}} : \operatorname{Aut}(\mathbb{F}_p/\mathbb{F}_p) \to \operatorname{Aut}(\mathbb{F}_{p^n}/\mathbb{F}_p)$ is the the restriction homomorphism. (Hint.

Show that \mathbb{F}_{p^n} is a splitting field of a separable polynomial; and deduce that $|\operatorname{Aut}(\mathbb{F}_{p^n}/\mathbb{F}_p)| = n.)$

- 4. Prove that $\operatorname{Aut}(\overline{\mathbb{F}}_p/\mathbb{F}_p) \simeq \widehat{\mathbb{Z}}$ where $\widehat{\mathbb{Z}} := \{\{a_n + n\mathbb{Z}\}_n \in \prod_{n=2}^{\infty} \mathbb{Z}/n\mathbb{Z} | m| n \text{ implies } m|a_n - a_m\}.$
- 5. Prove that $\widehat{\mathbb{Z}}$ is torsion free. (**Hint.** Suppose $k\{a_n + n\mathbb{Z}\}_n = 0$. This implies that $n|ka_n$ for any $n \in \mathbb{Z}^+$. Deduce that $n|a_{nk}$ for any n. Since $n|a_{nk} a_n$, deduce that $n|a_n$; and so $a_n + n\mathbb{Z} = 0$ for any n.)
- 6. Suppose $\overline{\mathbb{F}}_p/\mathbb{E}$ is a finite field extension. Prove that $\mathbb{E} = \overline{\mathbb{F}}_p$. (Hint. Prove that $\overline{\mathbb{F}}_p$ is a splitting field of a separable polynomial over \mathbb{E} . Deduce that $|\operatorname{Aut}(\overline{\mathbb{F}}_p/\mathbb{E})| = [\overline{\mathbb{F}}_p : \mathbb{E}]$.)

Splitting fields.

- 1. Suppose F is a field and $x^n 1$ has n distinct zeros in F. Suppose $a \in F^{\times}$.
 - (a) Prove that $F[\sqrt[n]{a}]$ is a splitting field of a separable polynomial.

- (b) Prove that {α ∈ F|αⁿ = 1} is a cyclic group of order
 n. (Hint. Use problem 4, HW 4, math200a.)
- (c) Prove that $\operatorname{Aut}(F[\sqrt[n]{a}]/F)$ can be embedded into $\mathbb{Z}/n\mathbb{Z}$. (Hint. Show that $\sigma(\sqrt[n]{a})/\sqrt[n]{a}$ is a zero of $x^n - 1$.)
- 2. Suppose F is a field of characteristic zero and E is a splitting field of $x^n 1$ over F. Prove that $\operatorname{Aut}(E/F)$ can be embedded into $(\mathbb{Z}/n\mathbb{Z})^{\times}$. (Hint. Suppose $\{\alpha \in E | \alpha^n = 1\} = \langle \zeta \rangle$ (using 1(b)). Show that $E = F[\zeta]$ and prove that for any $\sigma \in \operatorname{Aut}(E/F)$ there is $i_{\sigma} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ such that $\sigma(\zeta) = \zeta^{i_{\sigma}}$.)
- 3. Suppose F is a field and $x^n 1$ has n distinct zeros in F. Suppose E/F is a finite Galois extension and $a \in E$.
 - (a) Prove that a Galois closure E' of E[$\sqrt[n]{a}$] over F is

$$\mathsf{E}[\sqrt[n]{\tau(\mathfrak{a})}|\tau\in \mathrm{Gal}(\mathsf{E}/\mathsf{F})].$$

(**Hint**. Suppose E is a splitting field of the separable polynomial $f(x) \in F[x]$. Show that the above field is a splitting field of $f(x) \prod_{\tau \in Gal(E/F)} (x^n - \tau(\alpha))$ over F. Use this to show E' is contained in the above field. To get

the other direction, notice that any $\tau \in \text{Gal}(E/F)$ can be extended to $\widehat{\tau} \in \text{Gal}(E'/F)$. And $(\widehat{\tau}(\sqrt[t]{a}))^n - \tau(a) = 0$.)

(b) Suppose E' is as above; prove that Gal(E'/E) is solvable. (Hint. Suppose $Gal(E/F) := \{\tau_1, \ldots, \tau_m\}$; and let $E_0 := E$ and $E_k := E[\sqrt[n]{\tau_1(\alpha)}, \cdots, \sqrt[n]{\tau_k(\alpha)}]$. Use problem 1 to show, E_{k+1}/E_k is a cyclic extension; that means it is a Galois extension with cyclic Galois group. Consider the chain of subgroups

$$1 \subseteq \operatorname{Gal}(\mathsf{E}'/\mathsf{E}_{\mathfrak{m}-1}) \subseteq \operatorname{Gal}(\mathsf{E}'/\mathsf{E}_{\mathfrak{m}-2}) \subseteq \cdots \subseteq \operatorname{Gal}(\mathsf{E}'/\mathsf{E}).$$

Argue why $\operatorname{Gal}(E'/E_k)/\operatorname{Gal}(E'/E_{k+1}) \simeq \operatorname{Gal}(E_{k+1}/E_k)$; and deduce that $\operatorname{Gal}(E'/E)$ is solvable.)

4. Suppose F is a field of characteristic zero,

$$\mathsf{F} =: \mathsf{F}_0 \subseteq \mathsf{F}_1 \subseteq \mathsf{F}_2 \subseteq \cdots \subseteq \mathsf{F}_n$$

is a chain of fields such that $F_{i+1} = F_i[\sqrt[m]{a_i}]$ for some $a_i \in F_i^{\times}$. Suppose F' is a Galois closure of F_n over F. Prove that Gal(F'/F) is solvable. (Hint. Let E_0 be a splitting field of $x^m - 1$ over F_0 where $m = \prod_{i=1}^n m_i$. Let E_{i+1} be a

Galois closure of $E_i[\sqrt[m]{a_i}]$ over F_0 . Consider the chain of subgroups

 $1 \subseteq \operatorname{Gal}(\mathsf{E}_n/\mathsf{E}_{n-1}) \subseteq \cdots \subseteq \operatorname{Gal}(\mathsf{E}_n/\mathsf{E}_0) \subseteq \operatorname{Gal}(\mathsf{E}_n/\mathsf{F}_0).$

Argue why $\operatorname{Gal}(E_n/E_k)/\operatorname{Gal}(E_n/E_{k+1}) \simeq \operatorname{Gal}(E_{k+1}/E_k)$ and it is solvable. Argue why $\operatorname{Gal}(E_n/F_0)/\operatorname{Gal}(E_n/E_0) \simeq \operatorname{Gal}(E_0/F_0)$ is abelian. Deduce that $\operatorname{Gal}(E_n/F_0)$ is solvable. Argue why F' can be viewed as a subfield of E_n ; and deduce that $\operatorname{Gal}(F'/F)$ is solvable.

- 5. Suppose p is prime and $E \subseteq \mathbb{C}$ is a splitting field of $x^p 2$ over \mathbb{Q} . Prove that $\operatorname{Aut}(E/\mathbb{Q}) \simeq \mathbb{Z}/p\mathbb{Z}_{\phi} \rtimes (\mathbb{Z}/p\mathbb{Z})^{\times}$ where $\phi : (\mathbb{Z}/p\mathbb{Z})^{\times} \to \operatorname{Aut}(\mathbb{Z}/p\mathbb{Z}), (\phi(\mathfrak{a}))(\mathfrak{b}) := \mathfrak{a}\mathfrak{b}$. (Hint. In the previous HW assignment you have showed that $E = \mathbb{Q}[\zeta_p, \sqrt[q]{2}]$ and $[E : \mathbb{Q}] = p(p - 1)$. Argue why $|\operatorname{Aut}(E/\mathbb{Q})| = p(p - 1)$. For $\sigma \in \operatorname{Aut}(E/\mathbb{Q})$ investigate what the possibilities of $(\sigma(\zeta_p), \sigma(\sqrt[q]{2}))$ are.)
- 6. Suppose f(x) ∈ Q[x] is irreducible, deg f = p is prime, f has p 2 real and 2 non-real zeros in C. Let E ⊆ C be a splitting field of f(x) over Q. Prove that Aut(E/Q) ≃ S_p. (Hint. Since E/Q is a normal extension, restriction of

complex conjugation gives us an element of $Aut(E/\mathbb{Q})$. Let $\alpha \in E$ be a zero of f(x); then $p = [\mathbb{Q}[\alpha] : \mathbb{Q}] | [E : \mathbb{Q}])$. Argue why $[E : \mathbb{Q}] = |Aut(E/\mathbb{Q})|$. Let $X \subseteq E$ be the set of zeros of f(x). Argue why restriction to X gives us an embedding of $Aut(E/\mathbb{Q})$ into the symmetric group S_X of X which is isomorphic to S_p . Get a subgroup of S_p that contains a transposition and a cycle of length p. Use problem 7(b), HW 4, math200a.)

- 7. Suppose F is a field, $f(x) \in F[x]$ is irreducible, and E is a splitting field of f(x) over F. Suppose there is $\alpha \in E$ such that $f(\alpha) = f(\alpha + 1) = 0$. Prove that
 - (a) Characteristic of F is a prime number p.
 - (b) Show that Aut(E/F) has a subgroup of order p.