Cyclotomic extensions.

Let $\Phi_n(x)$ be the n-th cyclotomic polynomial. Suppose p is an odd prime which does not divide n. Let $\Phi_{n,p} \in \mathbb{F}_p[x]$ be $\Phi_n(x) \pmod{p}$. Let $\overline{\mathbb{F}}_p$ be an algebraic closure of \mathbb{F}_p and $E \subseteq \overline{\mathbb{F}}_p$ is a splitting field of $\Phi_{n,p}(x)$ over \mathbb{F}_p.

1. Suppose $\zeta \in E$ is a zero of $\Phi_{n,p}(x)$. Prove that ζ is not a zero of $\Phi_{d,p}(x)$ for any $d|n$ and $d \neq n$. Deduce that the multiplicative order $o(\zeta)$ of ζ is n. (Hint. $x^n - 1$ does not have multiple zeros in \mathbb{F}_p.)

2. Prove that $\Phi_{n,p}(x) = \prod_{1 \leq i \leq n, \gcd(i,n)=1} (x - \zeta^i)$ where $\zeta \in E$ is a zero of $\Phi_{n,p}(x)$. Deduce that $E = \mathbb{F}_p[\zeta]$ and $\theta : \text{Gal}(\mathbb{F}_p[\zeta]/\mathbb{F}_p) \to (\mathbb{Z}/n\mathbb{Z})^\times, \theta(\sigma) = a_\sigma \pmod{n}$ is an injective group homomorphism where $\sigma(\zeta) = \zeta^{a_\sigma}$.

3. Suppose θ is as in the previous problem. Prove that $\theta(\text{Gal}(E/F)) = \langle p \rangle$. (Hint. Use the fact that $\text{Gal}(E/F) = \langle \sigma_p \rangle$, where $\sigma_p(a) = a^p$ is the Frobenius map.)

4. Prove that if $\Phi_{n,p}(x)$ has a zero in \mathbb{F}_p, then $n|p - 1$.

5. Use the previous problem to show there are infinitely many primes of the form $\{nk+1\}_k^\infty$. (Hint. Suppose p_1, \ldots, p_r are primes of the form $nk+1$. Consider

$$f(x) := \Phi_n((2n \prod_{i=1}^r p_i)x + 1);$$

for some value of $a \in \mathbb{Z}, f(a)$ has a prime factor ℓ. Argue why $\ell \nmid n$ and $\ell \neq p_i$. Use the previous problem to deduce that $n|\ell - 1$.)

6. Prove that $\Phi_{n,p}(x)$ is irreducible in $\mathbb{F}_p[x]$ if and only if $\langle p \rangle = (\mathbb{Z}/n\mathbb{Z})^\times$.

Separable and purely inseparable extensions.

Suppose E/F is an algebraic extension. Let

$$E^{\text{sep}} := \{ \alpha \in E \mid m_{\alpha,F}(x) \text{ is separable} \}.$$

Date: April 2019.
(1) Prove that E^{sep} is a field and E^{sep}/F is a separable extension. \textbf{(Hint.} For $\alpha, \beta \in E^{\text{sep}}$, suppose L is a splitting field of $m_{\alpha,F}(x)m_{\beta,F}(x)$ over F. Argue that L/F is Galois; and so it is separable. Deduce that $\alpha \pm \beta, \alpha \beta^{\pm 1} \in E^{\text{sep}}$.)

(2) Prove that if $\text{char}(F) = p > 0$, then for any $\alpha \in E$ there is $l \in \mathbb{Z}$ such that $\alpha^{p^l} \in E^{\text{sep}}$ and $m_{\alpha,E^{\text{sep}}}(x) = x^{p^l} - \alpha^{p^l}$. \textbf{(Hint.} Argue that for $\alpha \in E$, there is a separable irreducible polynomial $g_\alpha(x) \in F[x]$ such that $m_{\alpha,F}(x) = g_\alpha(x^{p^l})$. Deduce that $\alpha^{p^l} \in E^{\text{sep}}$; and so order of $\alpha(E^{\text{sep}})^x$ is a power of p and $m_{\alpha,E^{\text{sep}}}(x)|(x - \alpha)^{p^l}$. Use these results to deduce that $m_{\alpha,E^{\text{sep}}}(x) = (x - \alpha)^l = x^{p^l} - \alpha^{p^l}$.)

(we say E/E^{sep} is a purely inseparable extension.)

(3) Suppose E/F is a normal extension. Prove that E^{sep}/F is a Galois extension.

(4) Suppose $F \subseteq E \subseteq K$ is a tower of algebraic field extensions. Prove that K/F is separable if and only if K/E and E/F are separable. \textbf{ (Hint.} \implies) $m_{\alpha,E}(x)|m_{\alpha,F}(x)$. \textbf{(\iff \)} Argue that $E \subseteq K^{\text{sep}}$, where $K^{\text{sep}} := \{ \alpha \in K | m_{\alpha,F}(x)$ is separable $\}$. Deduce that for any $\alpha \in K$, $m_{\alpha,K^{\text{sep}}}(x)|m_{\alpha,E}(x)$. On the other hand $m_{\alpha,K^{\text{sep}}}(x) = (x - \alpha)^l$ for some $l \in \mathbb{Z}$. Deduce that $l = 0$ and $\alpha \in K^{\text{sep}}$.)

\section*{Kummer theory}

Suppose $\mathbb{Q}[^n] \subseteq F \subseteq \mathbb{C}$ is a tower of fields where $\zeta := e^{2\pi i/n}$.

(1) For $a_1, a_2 \in F^\times$, prove that

$$F[\sqrt[n]{a_1}] = F[\sqrt[n]{a_2}] \iff \langle a_1(F^\times)^n \rangle = \langle a_2(F^\times)^n \rangle.$$

(Here $\sqrt[n]{a}$ means an element of \mathbb{C} which is a zero of $x^n - a$.) \textbf{ (Hint.} \implies) Recall that $\psi_1 : \text{Gal}(F[\sqrt[n]{a_1}]/F) \to \{1, \zeta, \ldots, \zeta^{n-1}\} \cong \mathbb{Z}/n\mathbb{Z}$, $\psi_1(\sigma) := \sigma(\sqrt[n]{a_1})/\sqrt[n]{a_1}$ is an injective group homomorphism. Similarly one can define ψ_2. Since $\mathbb{Z}/n\mathbb{Z}$ has a unique subgroup of order $[F[\sqrt[n]{a_1}]: F]$, we have that $\text{Im}(\psi_1) = \text{Im}(\psi_2)$. Suppose σ_0 is a generator of $\text{Gal}(F[\sqrt[n]{a_1}]/F)$; then $\sigma_0(\sqrt[n]{a_1})/\sqrt[n]{a_1} = (\sigma_0(\sqrt[n]{a_2})/\sqrt[n]{a_2})^i$ for some i. This implies that $\sigma_0(\sqrt[n]{a_1}/\sqrt[n]{a_2})^i = \sqrt[n]{a_1}/\sqrt[n]{a_2}$; deduce that $a_1(F^\times)^n \in \langle a_2(F^\times)^n \rangle$.\)
(2) Prove that \(\text{Gal}(F[\sqrt[n]{a}]/F) \simeq \langle a(F^\times)^n \rangle \) for any \(a \in F^\times \). (\textbf{Hint.} Suppose \(\sigma_0 \) is a generator of \(\text{Gal}(F[\sqrt[n]{a}]/F) \). Then by the above argument

\[
\sigma_0^d = \text{id} \iff (\sigma_0(\sqrt[n]{a})/\sqrt[n]{a})^d = 1 \iff \sqrt[n]{a^d} \in F^\times \iff a^d \in (F^\times)^n.
\]