MATH200C, HOMEWORK 2

GOLSEFIDY

CYCLOTOMIC EXTENSIONS.

Let $\Phi_n(x)$ be the *n*-th cyclotomic polynomial. Suppose *p* is an odd prime which does not divide *n*. Let $\Phi_{n,p} \in \mathbb{F}_p[x]$ be $\Phi_n(x) \pmod{p}$. Let $\overline{\mathbb{F}}_p$ be an algebraic closure of \mathbb{F}_p and $E \subseteq \overline{\mathbb{F}}_p$ is a splitting field of $\Phi_{n,p}(x)$ over \mathbb{F}_p .

- (1) Suppose $\zeta \in E$ is a zero of $\Phi_{n,p}(x)$. Prove that ζ is not a zero of $\Phi_{d,p}(x)$ for any d|n and $d \neq n$. Deduce that the multiplicative order $o(\zeta)$ of ζ is n. (**Hint**. $x^n 1$ does not have multiple zeros in $\overline{\mathbb{F}}_p$.)
- (2) Prove that $\Phi_{n,p}(x) = \prod_{1 \le i \le n, \gcd(i,n)=1} (x \zeta^i)$ where $\zeta \in E$ is a zero of $\Phi_{n,p}(x)$. Deduce that $E = \mathbb{F}_p[\zeta]$ and $\theta : \operatorname{Gal}(\mathbb{F}_p[\zeta]/\mathbb{F}_p) \to (\mathbb{Z}/n\mathbb{Z})^{\times}, \theta(\sigma) = a_{\sigma} \pmod{n}$ is an injective group homomorphism where $\sigma(\zeta) = \zeta^{a_{\sigma}}$.
- (3) Suppose θ is as in the previous problem. Prove that θ(Gal(E/F)) = ⟨p⟩.
 (Hint. Use the fact that Gal(E/F) = ⟨σ_p⟩, where σ_p(a) = a^p is the Frobenius map.)
- (4) Prove that if $\Phi_{n,p}(x)$ has a zero in \mathbb{F}_p , then n|p-1.
- (5) Use the previous problem to show there are infinitely many primes of the form $\{nk+1\}_{k=1}^{\infty}$. (Hint. Suppose p_1, \ldots, p_r are primes of the form nk+1. Consider

$$f(x) := \Phi_n((2n\prod_{i=1}^{r} p_i)x);$$

for some value of $a \in \mathbb{Z}$, f(a) has a prime factor ℓ . Argue why $\ell \nmid n$ and $\ell \neq p_i$. Use the previous problem to deduce that $n|\ell - 1$.)

(6) Prove that $\Phi_{n,p}(x)$ is irreducible in $\mathbb{F}_p[x]$ if and only if $\langle p \rangle = (\mathbb{Z}/n\mathbb{Z})^{\times}$.

SEPARABLE AND PURELY INSEPARABLE EXTENSIONS.

Suppose E/F is an algebraic extension. Let

 $E^{\text{sep}} := \{ \alpha \in E | m_{\alpha,F}(x) \text{ is separable} \}.$

Date: April 2019.

GOLSEFIDY

- (1) Prove that E^{sep} is a field and E^{sep}/F is a separable extension. (**Hint**. For $\alpha, \beta \in E^{\text{sep}}$, suppose L is a splitting field of $m_{\alpha,F}(x)m_{\beta,F}(x)$ over F. Argue that L/F is Galois; and so it is separable. Deduce that $\alpha \pm \beta, \alpha\beta^{\pm 1} \in E^{\text{sep}}$.)
- (2) Prove that if char(F) = p > 0, then for any $\alpha \in E$ there is $l \in \mathbb{Z}$ such that $\alpha^{p^l} \in E^{\text{sep}}$ and $m_{\alpha, E^{\text{sep}}}(x) = x^{p^l} - \alpha^{p^l}$. (Hint. Argue that for $\alpha \in E$, there is a separable irreducible polynomial $g_{\alpha}(x) \in F[x]$ such that $m_{\alpha, F}(x) = g_{\alpha}(x^{p^k})$. Deduce that $\alpha^{p^k} \in E^{\text{sep}}$; and so order of $\alpha(E^{\text{sep}})^{\times}$ is a power of p and $m_{\alpha, E^{\text{sep}}}(x)|(x - \alpha)^{p^k}$. Use these results to deduce that $m_{\alpha, E^{\text{sep}}}(x) = (x - \alpha)^{p^l} = x^{p^l} - \alpha^{p^l}$.)

(we say E/E^{sep} is a purely inseparable extension.)

- (3) Suppose E/F is a normal extension. Prove that E^{sep}/F is a Galois extension.
- (4) Suppose $F \subseteq E \subseteq K$ is a tower of algebraic field extensions. Prove that K/F is separable if and only if K/E and E/F are separable. (**Hint**.(\Rightarrow) $m_{\alpha,E}(x)|m_{\alpha,F}(x)$. (\Leftarrow) Argue that $E \subseteq K^{\text{sep}}$, where $K^{\text{sep}} := \{\alpha \in K | m_{\alpha,F}(x) \text{ is separable} \}$. Deduce that for any $\alpha \in K$, $m_{\alpha,K^{\text{sep}}}(x)|m_{\alpha,E}(x)$. On the other hand $m_{\alpha,K^{\text{sep}}}(x) = (x \alpha)^{p^l}$ for some $l \in \mathbb{Z}$. Deduce that l = 0 and $\alpha \in K^{\text{sep}}$.)

KUMMER THEORY

Suppose $\mathbb{Q}[\zeta_n] \subseteq F \subseteq \mathbb{C}$ is a tower of fields where $\zeta_n := e^{2\pi i/n}$.

(1) For $a_1, a_2 \in F^{\times}$, prove that

$$F[\sqrt[n]{a_1}] = F[\sqrt[n]{a_2}] \Leftrightarrow \langle a_1(F^{\times})^n \rangle = \langle a_2(F^{\times})^n \rangle.$$

(Here $\sqrt[n]{a}$ means an element of \mathbb{C} which is a zero of $x^n - a$.) (**Hint.** (\Rightarrow) Recall that ψ_1 : Gal $(F[\sqrt[n]{a_1}]/F) \rightarrow \{1, \zeta_n, \dots, \zeta_n^{n-1}\} \simeq \mathbb{Z}/n\mathbb{Z}, \psi_1(\sigma) := \sigma(\sqrt[n]{a_1})/\sqrt[n]{a_1}$ is an injective group homomorphism. Similarly one can define ψ_2 . Since $\mathbb{Z}/n\mathbb{Z}$ has a unique subgroup of order $[F[\sqrt[n]{a_1}]:F]$, we have that $\operatorname{Im}(\psi_1) = \operatorname{Im}(\psi_2)$. Suppose σ_0 is a generator of $\operatorname{Gal}(F[\sqrt[n]{a_1}]/F)$; then $\sigma_0(\sqrt[n]{a_1})/\sqrt[n]{a_1} = (\sigma_0(\sqrt[n]{a_2})/\sqrt[n]{a_2})^i$ for some *i*. This implies that $\sigma_0(\sqrt[n]{a_1}/\sqrt[n]{a_2}^i) = \sqrt[n]{a_1}/\sqrt[n]{a_2}^i$; deduce that $a_1(F^{\times})^n \in \langle a_2(F^{\times})^n \rangle$.)

 $\mathbf{2}$

(2) Prove that $\operatorname{Gal}(F[\sqrt[n]{a}]/F) \simeq \langle a(F^{\times})^n \rangle$ for any $a \in F^{\times}$. (**Hint**. Suppose σ_0 is a generator of $\operatorname{Gal}(F[\sqrt[n]{a}]/F)$. Then by the above argument

 $\sigma_0^d = \mathrm{id} \Leftrightarrow (\sigma_0(\sqrt[n]{a})/\sqrt[n]{a})^d = 1 \Leftrightarrow \sqrt[n]{a}^d \in F^{\times} \Leftrightarrow a^d \in (F^{\times})^n.)$