MATH200C, HOMEWORK 4

GOLSEFIDY

Examples related to primary ideals

Suppose k is a field and x, y, and z are indeterminants.
(1) Let $A:=k[x, y, z] /\left\langle x y-z^{2}\right\rangle$ and $\mathfrak{p}:=\langle\bar{x}, \bar{z}\rangle$ (For any polynomial $f \in$ $k[x, y, z], \bar{f}:=f+\left\langle x y-z^{2}\right\rangle \in A$.) Prove that $\mathfrak{p} \in \operatorname{Spec}(A)$ and \mathfrak{p}^{2} is not primary.
(2) Let $\mathfrak{q}:=\left\langle x, y^{2}\right\rangle \unlhd k[x, y]$. Prove that $\mathfrak{m}:=\sqrt{\mathfrak{q}}$ is a maximal ideal of $k[x, y]$. Deduce that \mathfrak{q} is \mathfrak{m}-primary. Prove that $\mathfrak{q} \neq \mathfrak{m}^{n}$ for any $n \in \mathbb{Z}^{+}$.
(3) Let $\mathfrak{a}:=\left\langle x^{2}, x y\right\rangle \unlhd k[x, y]$. Show that \mathfrak{a} has at least two reduced primary decompositions.

Ring of polynomials and some primary ideals

For $\mathfrak{a} \unlhd A$, let $\mathfrak{a}[x]:=\left\{\sum_{i=0}^{m} a_{i} x^{i} \mid a_{i} \in \mathfrak{a}, m \in \mathbb{Z}^{+}\right\}$. Let $f: A \hookrightarrow A[x], f(a):=a$.
(1) Convince yourself that $\mathfrak{a}^{e}=\mathfrak{a}[x]$. Show that $\operatorname{Spec} A \stackrel{e}{\hookrightarrow} \operatorname{Spec}(A[x])$ is a well-defined injection.
(2) Prove that, if \mathfrak{q} is a \mathfrak{p}-primary of A, then \mathfrak{q}^{e} is a \mathfrak{p}^{e}-primary ideal of $A[x]$.
(3) Suppose k is a field. Prove that $0 \subseteq\left\langle x_{1}\right\rangle \subseteq \cdots \subseteq\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a chain of prime ideals of $k\left[x_{1}, \ldots, x_{n}\right]$ and $\left\langle x_{1}, \ldots, x_{r}\right\rangle^{m}$ is $\left\langle x_{1}, \ldots, x_{r}\right\rangle$-primary for any $1 \leq r \leq n$ and positive integer m.

Faithfully flat algebras

Suppose A and B are two unital commutative rings, and $f: A \rightarrow B$ is a ring homomorphism. Consider B as an A-module where $a . b:=f(a) b$. Suppose B is a flat A-module. Prove that the following statements are equivalent:
(1) For any $\mathfrak{a} \unlhd A, \mathfrak{a}^{e c}=\mathfrak{a}$.
(2) $f^{*}: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ is surjective.
(3) For any $\mathfrak{m} \in \operatorname{Max}(A), \mathfrak{m}^{e} \neq B$.

Date: April 2019.
(4) If M is any non-zero A-module, then $M \otimes_{A} B \neq 0$.
(5) For any A-module $M, \theta: M \rightarrow M \otimes_{A} B, \theta(x):=x \otimes 1$ is injective.
(Hint. $(1) \Rightarrow(2)$, in class we proved that \mathfrak{p} is in the image of f^{*} if and only if $\mathfrak{p}^{e c}=\mathfrak{p}$.
(2) $\Rightarrow(3)$, if $f^{*}\left(\mathfrak{p}^{\prime}\right)=\mathfrak{m}$, then $\mathfrak{m}^{e} \subseteq \mathfrak{p}^{\prime}$.
$(3) \Rightarrow(4)$, For any $x \in M, 0 \rightarrow A x \rightarrow M$ is exact. Since B is flat, $0 \rightarrow$ $A x \otimes_{A} B \rightarrow M \otimes_{A} B$ is exact. So to show $M \otimes_{A} B$ is not zero, it is enough to show $A x \otimes_{A} B$ is not zero. Suppose $\mathfrak{a}:=\{a \in A \mid a x=0\} ;$ then $A x \simeq A / \mathfrak{a}$ as an A-module. Hence $A x \otimes_{A} B \simeq B / \mathfrak{a}^{e}$ as an A-module. Suppose \mathfrak{m} is a maximal ideal such that $\mathfrak{a} \subseteq \mathfrak{m}$, and deduce the claim.
$(4) \Rightarrow(5)$, Suppose $M^{\prime}:=\operatorname{ker} \theta$. Since B is a flat A-module,

$$
0 \rightarrow M^{\prime} \otimes_{A} B \rightarrow M \otimes_{A} B \xrightarrow{g}\left(M \otimes_{A} B\right) \otimes_{A} B
$$

is exact, where $g:=\theta \otimes \operatorname{id}_{B}$. View $M \otimes_{A} B$ as an B-module and let

$$
h:\left(M \otimes_{A} B\right) \otimes_{A} B \rightarrow M \otimes_{A} B, h(x \otimes b):=x b .
$$

Show that h is a well-defined B-module homomorphism. Notice that $g(m \otimes b)=$ $\theta(m) \otimes b=(m \otimes 1) \otimes b$; and so $(h \circ g)(m \otimes b)=(m \otimes 1) b=m \otimes b$. This implies that $h \circ g=\mathrm{id}$. Deduce that g is injective.
$(5) \Rightarrow(1)$ Show that $\bar{f}: A / \mathfrak{a} \rightarrow B / \mathfrak{a}^{e}, \bar{f}(a+\mathfrak{a}):=f(a)+\mathfrak{a}^{e}$ is a well-defined injective ring homomorphism.)

Kummer theory

Suppose F is a field and its characteristic is not 2 . Let $a_{1}, \ldots, a_{n} \in F^{\times}$, $H:=\left\langle a_{1}\left(F^{\times}\right)^{2}, \ldots, a_{n}\left(F^{\times}\right)^{2}\right\rangle \leq F^{\times} /\left(F^{\times}\right)^{2}$, and $E:=F\left[\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right]$.
(1) Prove that E / F is a Galois extension.
(2) Let $G:=\operatorname{Gal}(E / F)$. Prove that any non-trivial element of G has order 2. Deduce that $G \simeq(\mathbb{Z} / 2 \mathbb{Z})^{m}$ for some $m \in \mathbb{Z}$.
(3) Prove that $H \simeq(\mathbb{Z} / 2 \mathbb{Z})^{k}$ for some $k \in \mathbb{Z}$.
(4) Let $T: G \times H \rightarrow\{ \pm 1\} \simeq \mathbb{Z} / 2 \mathbb{Z}, T\left(\sigma, a\left(F^{\times}\right)^{2}\right):=\sigma(\sqrt{a}) / \sqrt{a}$. Prove that T is a non-degenerate bilinear form; that means

$$
\begin{array}{r}
T\left(\sigma \sigma^{\prime}, \bar{a}\right)=T(\sigma, \bar{a}) T\left(\sigma^{\prime}, \bar{a}\right), \\
T\left(\sigma, \overline{a a^{\prime}}\right)=T(\sigma, \bar{a}) T\left(\sigma, \bar{a}^{\prime}\right), \\
\left(\forall \sigma \in G, T\left(\sigma, \bar{a}_{0}\right)=1\right) \Rightarrow \bar{a}_{0}=\overline{1}, \\
\left(\forall \bar{a} \in H, T\left(\sigma_{0}, \bar{a}\right)=1\right) \Rightarrow \sigma_{0}=\mathrm{id}_{E} .
\end{array}
$$

(5) Prove that $\operatorname{Gal}\left(F\left[\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right] / F\right) \simeq\left\langle a_{1}\left(F^{\times}\right)^{2}, \ldots, a_{n}\left(F^{\times}\right)^{2}\right\rangle$.

