MATH200C, HOMEWORK 4

GOLSEFIDY

EXAMPLES RELATED TO PRIMARY IDEALS

Suppose k is a field and x, y, and z are indeterminants.

- (1) Let $A := k[x, y, z]/\langle xy z^2 \rangle$ and $\mathfrak{p} := \langle \overline{x}, \overline{z} \rangle$ (For any polynomial $f \in k[x, y, z], \overline{f} := f + \langle xy z^2 \rangle \in A$.) Prove that $\mathfrak{p} \in \operatorname{Spec}(A)$ and \mathfrak{p}^2 is not primary.
- (2) Let $\mathbf{q} := \langle x, y^2 \rangle \trianglelefteq k[x, y]$. Prove that $\mathbf{m} := \sqrt{\mathbf{q}}$ is a maximal ideal of k[x, y]. Deduce that \mathbf{q} is \mathbf{m} -primary. Prove that $\mathbf{q} \neq \mathbf{m}^n$ for any $n \in \mathbb{Z}^+$.
- (3) Let $\mathfrak{a} := \langle x^2, xy \rangle \leq k[x, y]$. Show that \mathfrak{a} has at least two reduced primary decompositions.

RING OF POLYNOMIALS AND SOME PRIMARY IDEALS

For $\mathfrak{a} \leq A$, let $\mathfrak{a}[x] := \{\sum_{i=0}^{m} a_i x^i | a_i \in \mathfrak{a}, m \in \mathbb{Z}^+\}$. Let $f : A \hookrightarrow A[x], f(a) := a$.

- (1) Convince yourself that $\mathfrak{a}^e = \mathfrak{a}[x]$. Show that $\operatorname{Spec} A \xrightarrow{e} \operatorname{Spec}(A[x])$ is a well-defined injection.
- (2) Prove that, if **q** is a **p**-primary of A, then \mathbf{q}^e is a \mathbf{p}^e -primary ideal of A[x].
- (3) Suppose k is a field. Prove that $0 \subseteq \langle x_1 \rangle \subseteq \cdots \subseteq \langle x_1, \ldots, x_n \rangle$ is a chain of prime ideals of $k[x_1, \ldots, x_n]$ and $\langle x_1, \ldots, x_r \rangle^m$ is $\langle x_1, \ldots, x_r \rangle$ -primary for any $1 \leq r \leq n$ and positive integer m.

FAITHFULLY FLAT ALGEBRAS

Suppose A and B are two unital commutative rings, and $f : A \to B$ is a ring homomorphism. Consider B as an A-module where a.b := f(a)b. Suppose B is a flat A-module. Prove that the following statements are equivalent:

- (1) For any $\mathfrak{a} \leq A$, $\mathfrak{a}^{ec} = \mathfrak{a}$.
- (2) $f^* : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is surjective.
- (3) For any $\mathfrak{m} \in Max(A)$, $\mathfrak{m}^e \neq B$.

Date: April 2019.

GOLSEFIDY

- (4) If M is any non-zero A-module, then $M \otimes_A B \neq 0$.
- (5) For any A-module $M, \theta: M \to M \otimes_A B, \theta(x) := x \otimes 1$ is injective.

(**Hint.** (1) \Rightarrow (2), in class we proved that \mathfrak{p} is in the image of f^* if and only if $\mathfrak{p}^{ec} = \mathfrak{p}$.

(2) \Rightarrow (3), if $f^*(\mathfrak{p}') = \mathfrak{m}$, then $\mathfrak{m}^e \subseteq \mathfrak{p}'$.

 $(3)\Rightarrow(4)$, For any $x \in M$, $0 \to Ax \to M$ is exact. Since B is flat, $0 \to Ax \otimes_A B \to M \otimes_A B$ is exact. So to show $M \otimes_A B$ is not zero, it is enough to show $Ax \otimes_A B$ is not zero. Suppose $\mathfrak{a} := \{a \in A \mid ax = 0\}$; then $Ax \simeq A/\mathfrak{a}$ as an A-module. Hence $Ax \otimes_A B \simeq B/\mathfrak{a}^e$ as an A-module. Suppose \mathfrak{m} is a maximal ideal such that $\mathfrak{a} \subseteq \mathfrak{m}$, and deduce the claim.

 $(4) \Rightarrow (5)$, Suppose $M' := \ker \theta$. Since B is a flat A-module,

$$0 \to M' \otimes_A B \to M \otimes_A B \xrightarrow{g} (M \otimes_A B) \otimes_A B$$

is exact, where $g := \theta \otimes id_B$. View $M \otimes_A B$ as an *B*-module and let

$$h: (M \otimes_A B) \otimes_A B \to M \otimes_A B, h(x \otimes b) := xb.$$

Show that h is a well-defined B-module homomorphism. Notice that $g(m \otimes b) = \theta(m) \otimes b = (m \otimes 1) \otimes b$; and so $(h \circ g)(m \otimes b) = (m \otimes 1)b = m \otimes b$. This implies that $h \circ g = id$. Deduce that g is injective.

 $(5) \Rightarrow (1)$ Show that $\overline{f} : A/\mathfrak{a} \to B/\mathfrak{a}^e, \overline{f}(a + \mathfrak{a}) := f(a) + \mathfrak{a}^e$ is a well-defined injective ring homomorphism.)

KUMMER THEORY

Suppose F is a field and its characteristic is not 2. Let $a_1, \ldots, a_n \in F^{\times}$, $H := \langle a_1(F^{\times})^2, \ldots, a_n(F^{\times})^2 \rangle \leq F^{\times}/(F^{\times})^2$, and $E := F[\sqrt{a_1}, \ldots, \sqrt{a_n}]$.

- (1) Prove that E/F is a Galois extension.
- (2) Let $G := \operatorname{Gal}(E/F)$. Prove that any non-trivial element of G has order 2. Deduce that $G \simeq (\mathbb{Z}/2\mathbb{Z})^m$ for some $m \in \mathbb{Z}$.
- (3) Prove that $H \simeq (\mathbb{Z}/2\mathbb{Z})^k$ for some $k \in \mathbb{Z}$.

2

MATH200C, HOMEWORK 4

(4) Let $T: G \times H \to \{\pm 1\} \simeq \mathbb{Z}/2\mathbb{Z}, T(\sigma, a(F^{\times})^2) := \sigma(\sqrt{a})/\sqrt{a}$. Prove that T is a non-degenerate bilinear form; that means

$$T(\sigma\sigma', \overline{a}) = T(\sigma, \overline{a})T(\sigma', \overline{a}),$$
$$T(\sigma, \overline{aa'}) = T(\sigma, \overline{a})T(\sigma, \overline{a'}),$$
$$(\forall \sigma \in G, T(\sigma, \overline{a}_0) = 1) \Rightarrow \overline{a}_0 = \overline{1},$$
$$(\forall \overline{a} \in H, T(\sigma_0, \overline{a}) = 1) \Rightarrow \sigma_0 = \mathrm{id}_E.$$

(5) Prove that $\operatorname{Gal}(F[\sqrt{a_1},\ldots,\sqrt{a_n}]/F) \simeq \langle a_1(F^{\times})^2,\ldots,a_n(F^{\times})^2 \rangle.$