MATH200C, HOMEWORK 6

GOLSEFIDY

VALUATION RINGS AND VALUATIONS.

(1) Suppose G is a totally ordered abelian group, and F is a field. A valuation of F is $v: F \rightarrow G \cup\{\infty\}$ with the following properties:
(a) $v(a)=\infty \Leftrightarrow a=0$.
(b) $\forall g \in G, g<\infty, g+\infty:=\infty, \infty+\infty:=\infty$.
(c) $\forall x, y \in F, v(x y)=v(x)+v(y)$.
(d) $\forall x, y \in F, v(x+y) \geq \min \{v(x), v(y)\}$.

Let $\mathscr{O}_{v}:=\{x \in F \mid v(x) \geq 0\}$ and $\mathfrak{m}_{v}:=\{x \in F \mid v(x)>0\}$. Prove that \mathscr{O}_{v} is a valuation ring and $\operatorname{Max}\left(\mathscr{O}_{v}\right)=\left\{\mathfrak{m}_{v}\right\}$.
(2) Let A be a valuation ring of a field F. Let $G:=F^{\times} / A^{\times}$. We say $x A^{\times} \geq$ $y A^{\times}$if $x y^{-1} \in A$. Prove that G is a totally ordered group and $v: F \rightarrow$ $G \cup\{\infty\}, v(x):=\left\{\begin{array}{ll}x A^{\times} & \text {if } x \in F^{\times} \\ \infty & \text { otherwise. }\end{array}\right.$ is a valuation of F, and $\mathscr{O}_{v}=A$.

Ring of integers of a number field

Suppose k / \mathbb{Q} is a finite field extension (we say k is a number field), and \mathscr{O}_{k} is the integral closure of \mathbb{Z} in k. In class we proved that $\operatorname{dim} \mathscr{O}_{k}=1$ and $\mathscr{O}_{k} \simeq \mathbb{Z}^{[k: \mathbb{Q}]}$ as an abelian group.
(1) Prove that for any $\mathfrak{m} \in \operatorname{Max}\left(\mathscr{O}_{k}\right), \mathscr{O}_{k} / \mathfrak{m}$ is a finite field.
(2) Prove that if \mathfrak{q} is a non-zero primary ideal of \mathscr{O}_{k}, then $\mathscr{O}_{k} / \mathfrak{q}$ is finite.
(3) Prove that if \mathfrak{a} is a non-zero ideal of \mathscr{O}_{k}, then $\mathscr{O}_{k} / \mathfrak{a}$ is a finite. $\left(\left|\mathscr{O}_{k} / \mathfrak{a}\right|\right.$ is called the norm of the ideal \mathfrak{a}, and it is denoted by $N_{k / \mathbb{Q}}(\mathfrak{a})$.)
(4) Suppose $\operatorname{Embed}_{\mathbb{Q}}(k, \overline{\mathbb{Q}})=\left\{\sigma_{1}, \ldots, \sigma_{d}\right\}$, and $\mathscr{O}_{k}=\mathbb{Z} a_{1} \oplus \mathbb{Z} a_{2} \oplus \cdots \oplus \mathbb{Z} a_{d}$. Prove that $D_{k}:=\operatorname{det}\left[\sigma_{i}\left(a_{j}\right)\right]^{2} \in \mathbb{Z}$ (this is called the discriminant of k).
(5) For $a \in \mathscr{O}_{k} \backslash\{0\}$, prove that $\left|N_{k / \mathbb{Q}}(a)\right|=\left|\mathscr{O}_{k} / a \mathscr{O}_{k}\right|$. (Hint. Let $l_{a}: k \rightarrow$ $k, l_{a}(x):=a x$. Then $N_{k / \mathbb{Q}}(a)=\operatorname{det} l_{a}$. On the other hand, think about \mathscr{O}_{k}

Date: April 2019.
as a lattice in $\mathscr{O}_{k} \otimes_{\mathbb{Z}} \mathbb{R} \simeq \mathbb{R} a_{1} \oplus \mathbb{R} a_{2} \oplus \cdots \oplus \mathbb{R} a_{d}$ and consider the \mathbb{R}-linear $\operatorname{map} T_{a}:=l_{a} \otimes \operatorname{id}_{\mathbb{R}}: \mathscr{O}_{k} \otimes_{\mathbb{Z}} \mathbb{R} \rightarrow \mathscr{O}_{k} \otimes_{\mathbb{Z}} \mathbb{R}$ and argue why $\operatorname{det} l_{a}=\operatorname{det} T_{a}$. Argue why using volume we have that for $T_{a} \in M_{d}(\mathbb{Z}),\left|\operatorname{det} T_{a}\right|=\left[\mathbb{Z}^{d}\right.$: $\left.T_{a}\left(\mathbb{Z}^{d}\right)\right]$.) (Because of this part we have $N_{k / \mathbb{Q}}\left(a \mathscr{O}_{k}\right)=\left|N_{k / \mathbb{Q}}(a)\right|$.)

Gelfand-Kirillov dimension

Let k be a field and A be a finitely generated k-algebra. Suppose V is a k-subspace of A such that
(1) $\operatorname{dim}_{k} V<\infty$,
(2) $1 \in V$,
(3) $A=\bigcup_{i=1}^{\infty} V^{(n)}$ where $V^{(n)}:=\left\{v_{1} \cdots v_{n} \mid v_{i} \in V\right\}$.

Let $D_{V}(n):=\operatorname{dim}_{k} V^{(n)}$ and

$$
\begin{equation*}
\operatorname{GKdim}(A):=\limsup _{n \rightarrow \infty} \frac{\log D_{V}(n)}{\log n} \tag{1}
\end{equation*}
$$

(1) Prove that the value of (1) is independent of choice of V.
(2) Suppose B / A is a ring extension and A and B are finitely generated k algebras. Prove that $\operatorname{GKdim}(A) \leq \operatorname{GKdim}(B)$.
(3) Suppose $\mathfrak{a} \unlhd A$. Prove that $\operatorname{GKdim}(A / \mathfrak{a}) \leq \operatorname{GKdim}(A)$.
(4) Prove that $\operatorname{GKdim}(A[x])=\mathrm{GK} \operatorname{dim}(A)+1$.
(5) Suppose B / A is a ring extension and B is a finitely generated A-module. Prove that $\operatorname{GKdim}(A)=\operatorname{GKdim}(B)$.
(6) Using the fact that $\operatorname{dim} k\left[x_{1}, \ldots, x_{d}\right]=d$, prove that $\operatorname{GKdim}(A)=\operatorname{dim} A$. (The importance of GKdimension is on the fact that it works equally well in the non-commutative setting; in fact the above (1)-(5) statements hold for noncommutative algebras as well.)

