MATH200C, LECTURE 0

GOLSEFIDY

REVIEW OF MAIN RESULTS IN FIELD THEORY.

Let's recall some of the main results and concepts in field theory that we have covered so far:

- (1) E/F and K/E are finite extensions $\Leftrightarrow K/F$ is a finite extension.
- (2) E/F and K/E are algebraic extensions $\Leftrightarrow K/F$ is an algebraic extension.
- (3) $\{\alpha \in E \mid \alpha \text{ is algebraic over } F\}$ is an algebraic extension of F if E/F is an extension; it is called the algebraic closure of F in E.
- (4) Suppose $\sigma : F_1 \to F_2$ is a field isomorphism, $p(x) \in F_1[x]$ is irreducible, E_1 is a splitting field of p(x) over F_1 , and E_2 is a splitting field of $\sigma(p)$ over F_2 . Suppose $\alpha_1 \in E_1$ is a zero of p and $\alpha_2 \in E_2$ is a zero of $\sigma(p)$. Then there is a field isomorphism $\hat{\sigma} : F_1[\alpha_1] \to F_2[\alpha_2]$ such that $\hat{\sigma}|_{F_1} = \sigma$.
- (5) Suppose $\sigma : F_1 \to F_2$ is a field isomorphism, $f(x) \in F_1[x]$, E_1 is a splitting field of f(x) over F_1 and E_2 is a splitting field of $\sigma(f)$ over F_2 . Then there is a field isomorphism $\widehat{\sigma} : E_1 \to E_2$ such that $\widehat{\sigma}|_{F_1} = \sigma$.
- (6) For any field F, there is an algebraically closed field \overline{F} such that \overline{F}/F is an algebraic extension; this is called an algebraic closure of F.
- (7) If $\sigma: F_1 \to F_2$ is a field isomorphism and F_i is an algebraic closure of F_i , then there is a field isomorphism $\widehat{\sigma}: \overline{F}_1 \to \overline{F}_2$ such that $\widehat{\sigma}|_{F_1} = \sigma$.
- (8) Suppose $F \subseteq E \subseteq \overline{F}$ is a tower of fields and \overline{F} is an algebraic closure of F. Then E/F is called a normal extension if the following equivalent properties hold:
 - (a) For any $\sigma \in \operatorname{Aut}(\overline{F}/F)$, $\sigma(E) = E$.
 - (b) For any $\alpha \in E$, $m_{\alpha,F}(x)$ can be written as a product of degree 1 factors in E[x].
 - (c) E is a splitting field of a family $\mathscr{F} \subseteq F[x]$ of polynomials over F.
 - (d) There are $\{E_i\}_{i \in I}$ and $\{p_i\}_{i \in I} \subseteq F[x]$ such that
 - (i) E_i is a splitting field of $p_i(x)$ over F.

GOLSEFIDY

(ii) For any $i, j \in I$, there is $k \in I$ such that $E_i \cup E_j \subseteq E_k$.

(iii) $E = \bigcup_{i \in I} E_i$.

- (9) A finite extension is normal if and only if it is a splitting field of a polynomial.
- (10) If E/F is a normal extension, then $\operatorname{Aut}(E/F) \simeq \varprojlim_{E'} \operatorname{Aut}(E'/F)$ where E' runs through subfields of E such that E'/F is a finite normal extension.
- (11) Suppose $F \subseteq E \subseteq K$, and E/F and K/F are normal extensions; then $\operatorname{Aut}(K/E)$ is a normal subgroup of $\operatorname{Aut}(K/F)$ and

$$\operatorname{Aut}(K/F) / \operatorname{Aut}(K/E) \simeq \operatorname{Aut}(E/F).$$

- (12) Suppose E is a splitting field of f(x) over F. Then $|\operatorname{Aut}(E/F)| \leq [E:F]$ and equality holds if and only if f(x) is a separable polynomial; recall that we say a polynomial $f(x) \in F[x]$ is separable if all of its irreducible factors have distinct zeros in a splitting field of f(x) over F.
- (13) An algebraic extension E/F is called separable if for any $\alpha \in E$, $m_{\alpha,F}(x)$ is a separable polynomial.
- (14) $\mathbb{F}_p(t)/\mathbb{F}_p(t^p)$ is not a separable extension.