MATH200C, LECTURE 1

GOLSEFIDY

GALOIS EXTENSIONS.

Lemma 1. Suppose E/F is a finite extension and $\sigma : F \to E$ is an embedding. Let $\text{Isom}_{\sigma}(E, E) := \{ \widehat{\sigma} : E \to E | \widehat{\sigma}|_F = \sigma \}$. Then

$$|\operatorname{Isom}_{\sigma}(E, E)| \le [E : F];$$

in particular $|\operatorname{Aut}(E/F)| \leq [E:F].$

Proof. We have already proved this for the case when E is a splitting field of a polynomial. The same argument gives us the above result. We proceed by the strong induction on [E:F]. Suppose $\alpha \in E \setminus F$; let

$$\operatorname{Embed}_{\sigma}(F[\alpha], E) := \{ \widetilde{\sigma} : F[\alpha] \to E | \ \widetilde{\sigma}|_F = \sigma \}.$$

Then

 $|\text{Embed}_{\sigma}(F[\alpha], E)| = \# \text{ of distinct zeros of } \sigma(m_{\alpha, F}(x)) \text{ in } E \leq [F[\alpha] : F].$

And so

$$|\operatorname{Isom}_{\sigma}(E, E)| = \sum_{\widetilde{\sigma} \in \operatorname{Embed}_{\sigma}(F[\alpha], E)} |\operatorname{Isom}_{\widetilde{\sigma}}(E, E)|$$

$$\leq \sum_{\widetilde{\sigma} \in \operatorname{Embed}_{\sigma}(F[\alpha], E)} [E : F[\alpha]] \qquad (\text{induction hypothesis})$$

$$\leq [F[\alpha] : F][E : F[\alpha]] = [E : F]$$

Theorem 2. Suppose E/F is a finite field extension; then the following statements are equivalent:

- (1) E is a splitting field of a separable polynomial over F.
- (2) $|\operatorname{Aut}(E/F)| = [E:F].$
- (3) E/F is a normal separable extension.

GOLSEFIDY

Proof. (1) \Rightarrow (2), we have already proved. (2) \Rightarrow (3) Suppose $\alpha \in E$; then

$$\operatorname{Embed}_{\operatorname{id}_F}(F[\alpha], E) = \# \text{ of distinct zeros of } m_{\alpha, F}(x) \text{ in } E$$

and

$$|\operatorname{Aut}(E/F)| = \sum_{\sigma \in \operatorname{Embed}(F[\alpha], E)} |\operatorname{Isom}_{\alpha}(E, E)|$$

$$\leq \sum_{\sigma \in \operatorname{Embed}(F[\alpha], E)} [E : F[\alpha]] \qquad (\text{The above lemma})$$

$$= (\# \text{ of distinct zeros of } m_{\alpha, F}(x) \text{ in } E)(F[\alpha], E)$$

$$\leq [F[\alpha] : F][E : F[\alpha]] = [E : F].$$

Since by our assumption equality holds we have

of distinct zeros of $m_{\alpha,F}(x)$ in $E = [F[\alpha] : F] = \deg m_{\alpha,F}(x)$.

Hence all the zeros of $m_{\alpha,F}$ are in E and they are distinct. Hence E/F is a normal separable extension.

 $(3) \Rightarrow (1)$ Suppose $\alpha_1, \ldots, \alpha_n$ is an *F*-basis of *E*. Then *E* is a splitting field of $f(x) := \prod_{i=1}^n m_{\alpha_i,F}(x)$ as E/F is a normal extension. Since E/F is a separable extension, $m_{\alpha_i,F}(x)$ does not have multiple zeros in *E* and they are irreducible factors of f(x) in F[x]; and so f(x) is a separable polynomial. \Box

Definition 3. An algebraic extension E/F is called a Galois extension if E/F is a normal separable extension. When E/F is a Galois extension, we write $\operatorname{Gal}(E/F)$ instead of $\operatorname{Aut}(E/F)$.

We have seen that if E/F is a finite Galois extension, then $\operatorname{Gal}(E/F)$ determines [E:F]. Next we will see that knowing $\operatorname{Gal}(E/F)$ as a subgroup $\operatorname{Aut}(E)$ uniquely determines F. The following is the key technical lemma.

Lemma 4. Suppose G is a finite group of Aut(E). Suppose V is a non-zero E-subspace of E^n . Suppose for $\sigma \in G$ and $v := (a_1, \ldots, a_n) \in V$ we have that $\sigma(v) := (\sigma(a_1), \ldots, \sigma(a_n)) \in V$. Then

$$V^G := \{ v \in V | \forall \sigma \in G, \sigma(v) = v \} \neq 0.$$

Proof. Suppose $v \in V$ has the smallest number of non-zero components among the non-zero elements of V. After reordering its components we can assume that $v = (a_1, \ldots, a_k, 0, \ldots, 0)$ for some $a_i \in E^{\times}$. Since V is an E-subspace, $a_1^{-1}v \in V$.

 $\mathbf{2}$

So W.L.O.G. we can and will assume that the first component of v is 1. Next we show that $v \in V^G$; and so $V^G \neq 0$.

For any $\sigma \in G$, we have $\sigma(v) - v = (0, \sigma(a_2) - a_2, \dots, \sigma(a_k) - a_k, 0, \dots, 0)$ has at most k - 1 non-zero components. Since k is the smallest number of nonzero components of non-zero elements of V and $\sigma(v) - v \in V$, we deduce that $\sigma(v) - v = 0$; and claim follows.

Lemma 5. Suppose G is a finite group of Aut(E). Then

- (1) Fix(G) := $\{e \in E | \forall \sigma \in G, \sigma(e) = e\}$ is a subfield of E.
- (2) $[E : \operatorname{Fix}(G)] \leq |G|.$

Proof. (1) is clear. (2) Suppose |G| = n and $G = \{\sigma_1, \ldots, \sigma_n\}$. It is enough to show that any n + 1 elements of E are F-linearly dependent where F := Fix(G). Suppose $\alpha_1, \ldots, \alpha_{n+1}$ are n + 1 arbitrary elements of E. We have to show that there are $c_1, \ldots, c_{n+1} \in F$ such that $c_1\alpha_1 + \cdots + c_{n+1}\alpha_{n+1} = 0$. If there are such c_i 's, for any j we get

$$0 = \sigma_j(c_1\alpha_1 + \dots + c_{n+1}\alpha_{n+1}) = c_1\sigma_j(\alpha_1) + \dots + c_{n+1}\sigma_j(\alpha_{n+1});$$

and so $v := (c_1, \ldots, c_{n+1})$ will be in the left kernel of the matrix $[\sigma_j(\alpha_i)]$; that means

$$\begin{pmatrix} c_1 & \cdots & c_{n+1} \end{pmatrix} \begin{pmatrix} \sigma_1(\alpha_1) & \cdots & \sigma_n(\alpha_1) \\ \vdots & \ddots & \vdots \\ \sigma_1(\alpha_{n+1}) & \cdots & \sigma_n(\alpha_{n+1}) \end{pmatrix} = 0.$$

Let $V \subseteq E^{n+1}$ be the left kernel of the above matrix. We need to show that $V \cap F^{n+1} \neq 0$. Notice that $V \cap F^{n+1}$ is the set V^G of fixed points of G in V. Therefore by the previous lemma, it is enough to show $V \neq 0$ and V is G-invariant. Since V is the left kernel of an $(n + 1) \times n$ matrix, it is a non-zero E-subspace of E^{n+1} .

Suppose $v \in V$ and $\sigma \in G$; then $v[\sigma_j(\alpha_i)] = 0$ implies that $\sigma(v)[(\sigma \circ \sigma_j)(\alpha_i)] = 0$. This is equivalent to say $(\sigma(v))((\sigma \circ \sigma_k)(\alpha_1, \dots, \alpha_{n+1})^T) = 0$ for any $1 \leq k \leq n$. Notice that $\{\sigma \circ \sigma_1, \dots, \sigma \circ \sigma_n\}$ is just a permutation of $\{\sigma_1, \dots, \sigma_n\}$. Hence for any $1 \leq k \leq n$, we have $(\sigma(v))(\sigma_k(\alpha_1, \dots, \alpha_{n+1})^T) = 0$, which is equivalent to say $\sigma(v) \in V$. Thus V is invariant under the action of G; and claim follows. \Box

Theorem 6. Suppose G is a finite subgroup of Aut(E). Then (1) E/Fix(G) is a Galois extension, and (2) Gal(E/Fix(G)) = G.

GOLSEFIDY

Proof. Let $F := \operatorname{Fix}(G)$. By the previous lemma, $[E : F] \leq |G|$; and so it is a finite extension. Hence by an earlier lemma, we have $|\operatorname{Aut}(E/F)| \leq [E : F]$. And it is clear that $G \subseteq \operatorname{Aut}(E/F)$. So overall we have

$$|G| \le |\operatorname{Aut}(E/F)| \le [E:F] \le |G|.$$

Thus all equalities should hold. This implies that $|\operatorname{Aut}(E/F)| = [E : F]$ and $|\operatorname{Aut}(E/F)| = |G|$. Hence E/F is a Galois extension and $\operatorname{Aut}(E/F) = G$. \Box

During lecture we gave an alternative argument to show E/F is a normal extension. Since the idea behind that argument is useful, it is reproduced here: for $\alpha \in E$, let $f_{\alpha}(x) := \prod_{\sigma \in G} (x - \sigma(\alpha))$. As any element of G only permutes the linear factors of $f_{\alpha}(x)$, we get that for any $\sigma \in G$, $\sigma(f_{\alpha}) = f_{\alpha}$. Hence $f_{\alpha}(x) \in \operatorname{Fix}(G)[x] = F[x]$. Since $f_{\alpha}(\alpha) = 0$, we deduce that $m_{\alpha,F}(x)|f_{\alpha}(x)$. Thus zeros of $m_{\alpha,F}(x)$ are among the G-orbit of α ; and so all of them are in E. This implies that E/F is a normal extension.

Corollary 7. Suppose E/F is a finite Galois extension. Then

$$\operatorname{Fix}(\operatorname{Gal}(E/F)) = F.$$

Proof. Let F' := Fix(Gal(E/F)). Then by the above Theorem E/F' is a Galois extension and Gal(E/F') = Gal(E/F). Hence

(1)
$$[E:F] = |Gal(E/F)| = |Gal(E/F')| = [E:F'].$$

It is also clear that $F \subseteq \text{Fix}(\text{Gal}(E/F)) = F'$. Therefore by (1) we have that [F':F] = 1; and claim follows.

So far we have proved the following:

Theorem 8. Suppose E/F is a finite extension. Then the following statements are equivalent:

- (1) E is a splitting field of a separable polynomial over F.
- (2) $|\operatorname{Aut}(E/F)| = [E:F].$
- (3) E/F is a Galois extension.
- (4) $F = \operatorname{Fix}(\operatorname{Aut}(E/F)).$
- (5) F = Fix(G) for some finite subgroup G of Aut(E).