Main theorems of Galois theory.

So far we have proved the following:

Theorem 1. Suppose E/F is a finite extension. Then the following statements are equivalent:

1. E is a splitting field of a separable polynomial over F.
2. $|\text{Aut}(E/F)| = [E : F]$.
3. E/F is a Galois extension.
4. $F = \text{Fix}(\text{Aut}(E/F))$.
5. $F = \text{Fix}(G)$ for some finite subgroup G of $\text{Aut}(E)$.

Now we have all the needed tools to prove:

Theorem 2. Suppose E/F is a finite Galois extension. Let

$$
\begin{align*}
\{K | F \subseteq K \subseteq E, K \text{ subfield}\} & \quad \{H | H \leq \text{Gal}(E/F)\} \\
K & \quad \Psi \quad \text{Gal}(E/K) \\
\text{Fix}(H) & \quad \Phi \quad \text{Gal}(E/K)
\end{align*}
$$

1. Ψ is well-defined; that means E/K is a Galois extension. And Ψ and Φ are inverse of each other.
2. These maps give bijections between normal extensions K/F and normal subgroups of $\text{Gal}(E/F)$.
3. If K/F is a normal extension and $F \subseteq K \subseteq E$, then

$$\text{Gal}(K/F) \cong \text{Gal}(E/F)/\text{Gal}(E/K).$$

Proof. (1): For any $\alpha \in E$, we have that $m_{\alpha,K}(x)|m_{\alpha,F}(x)$. Hence all the zeros of $m_{\alpha,K}(x)$ are in E and all of them are distinct. Hence E/K is a normal separable extension. Hence E/K is a Galois extension.

We have

$$(\Phi \circ \Psi)(K) = \text{Fix}(\text{Gal}(E/K)) = K,$$
and

$$(\Psi \circ \Phi)(H) = \text{Gal}(E/\text{Fix}(H)) = H.$$

(2) and (3): Suppose K/F is a normal extension. For any $\alpha \in K$, $m_{\alpha,F}(x)$ has distinct zeros in E as E/F is separable. Hence K/F is a separable extension. Therefore K/F is both normal and separable, which means that it is a Galois extension.

Since E/F and K/F are normal extension, the restriction map $r : \text{Gal}(E/F) \to \text{Gal}(K/F)$ is a well-defined onto group homomorphism. And $\text{ker}(r)$ is clearly $\text{Aut}(E/K) = \text{Gal}(E/K)$. Hence we have that $\Psi(K)$ is a normal subgroup of $\text{Gal}(E/F)$ and

$$\text{Gal}(K/F) \cong \text{Gal}(E/F)/\text{Gal}(E/K).$$

Suppose H is a normal subgroup of $\text{Gal}(E/F)$. Let $K := \text{Fix}(H)$. Suppose \overline{F} is an algebraic closure of F that has E as a subfield. To show K/F is a normal extension, it is enough to show that for any $\widehat{\sigma} \in \text{Aut}(\overline{F}/F)$ we have $\widehat{\sigma}(K) = K$. Notice that, since $\widehat{\sigma}(F) = F$ and K/F is a finite extension, it is enough to show $\widehat{\sigma}(K) \subseteq K$. Since E/F is a normal extension, $\widehat{\sigma}(E) = E$. So the restriction σ of $\widehat{\sigma}$ to E gives us an element of $\text{Gal}(E/F)$. We have to show for any $\alpha \in K$,

$$\widehat{\sigma}(\alpha) = \sigma(\alpha) \in \text{Fix}(H).$$

Hence we have to show for any $\tau \in H$, we have

$$\tau(\sigma(\alpha)) \equiv \sigma(\alpha).$$

Notice that since H is a normal subgroup of $\text{Gal}(E/F)$, we have $\sigma^{-1} \circ \tau \circ \sigma \in H$. Therefore

$$(\sigma^{-1} \circ \tau \circ \sigma)(\alpha) = \alpha;$$

and claim follows. \hfill \Box

It is worth pointing out that in the above proof, we showed: if E/F is a separable extension and K is an intermediate subfield, then K/F is a separable extension. Later partially as part of your HW assignment you will strengthen this result by showing that E/F is separable if and only if E/K and K/F are separable. As a consequence of the main theorem of Galois theory, we also see that if E/F is a normal extension, then E/K is normal; but K/F is often not a normal extension. (If all the subgroups of $\text{Gal}(E/F)$ are normal, then for any
intermediate subfield \(K \) we have that \(E/K \) and \(K/F \) are normal extensions; in particular we get this when \(\text{Gal}(E/F) \) is an abelian group.

Let us also observe that the set of intermediate subfields of \(F \subseteq E \) and the set of all subgroups of \(\text{Gal}(E/F) \) are POSets with respect to the inclusion. And \(\Psi \) and \(\Phi \) are order reversing bijections:

if \(K_1 \subseteq K_2 \), then clearly \(\Psi(K_1) \supseteq \Psi(K_2) \); and if \(H_1 \subseteq H_2 \), then clearly \(\Phi(H_1) \supseteq \Phi(H_2) \). Hence we get that

\[
K_1 \subseteq K_2 \Leftrightarrow \Psi(K_1) \supseteq \Psi(K_2), \text{ and } H_1 \subseteq H_2 \Leftrightarrow \Phi(H_1) \supseteq \Phi(H_2).
\]

The following is a non-obvious corollary of the main theorem of Galois theory.

Theorem 3. Suppose \(E/F \) is a finite separable extension. Then there are only finitely many intermediate subfields \(F \subseteq K \subseteq E \).

Proof. Suppose \(\{\alpha_1, \ldots, \alpha_n\} \) is an \(F \)-basis of \(E \). Let \(L \) be a splitting field of \(f(x) := \prod_{i=1}^{n} m_{\alpha_i,F}(x) \). Since \(E/F \) is a separable extension, \(f(x) \) is a separable polynomial. Hence \(L/F \) is a finite Galois extension. Hence by the main theorem of Galois theory, there are only finitely many intermediate subfields \(F \subseteq K \subseteq L \); and claim follows. \(\square \)

It is worth pointing out that \(L \) in the above proof is the smallest Galois extension of \(F \) that contains \(E \) as a subfield. That is why \(L \) is called the Galois closure of \(E \) over \(F \). When \(E/F \) is not separable, we still can do the above construction; and we get the smallest normal extension of \(F \) that contains \(E \) as a subfield. That is why in general we call \(L \) the normal closure of \(E \) over \(F \).

Problem 4. Prove that the finite field extension \(\mathbb{F}_p(x, y)/\mathbb{F}_p(x^p, y^p) \) has infinitely many intermediate subfields.

Theorem 5. Suppose \(E/F \) is a finite field extension. Then there are only finitely many intermediate subfields \(F \subseteq K \subseteq E \) if and only if there is \(\alpha \in E \) such that \(E = F[\alpha] \). (In this case \(\alpha \) is called a primitive element and \(E/F \) is called a simple extension.)

Corollary 6. Suppose \(E/F \) is a finite separable extension. Then \(E/F \) is a simple extension.

Proof. This is an immediate corollary of the previous couple of theorems. \(\square \)
Proof of Theorem 5. (⇒) Since E/F is a finite extension, $E = F[\alpha_1, \ldots, \alpha_n]$ for some α_i’s. Using induction on n, it is clear that it is enough to prove the case of $n = 2$. So suppose $E = F[\alpha_1, \alpha_2]$.

If F is a finite field, then E is a finite field. And so E^\times is a cyclic group. (Recall that in you have proved the following result in group theory: if G is a finite group and for any positive integer n, $|\{g^n = 1 \mid g \in G\}| \leq n$, then G is a cyclic group. Using this result it is immediate that E^\times is cyclic if E is a finite field.) Suppose $E^\times = \langle \alpha \rangle$; and so $E = F[\alpha]$.

Suppose F is infinite and $E = F[\alpha_1, \alpha_2]$. Consider the family of intermediate subfields $\{F[\alpha_1 + c\alpha_2] \mid c \in F\}$. Since there are only finitely many intermediate subfields and F is infinite, there are $c, c' \in F$ such that $c \neq c'$ and $K := F[\alpha_1 + c\alpha_2] = F[\alpha_1 + c'\alpha_2]$. Therefore K contains $(\alpha_1 + c\alpha_2) - (\alpha_1 + c'\alpha_2) = (c - c')\alpha_2$. Since $F \subseteq K$ and $c - c' \in F^\times$, we deduce that $\alpha_2 \in K$. And so $\alpha_1 \in K$. Thus $K = F[\alpha_1, \alpha_2] = E$, which implies $E = F[\alpha_1 + c\alpha_2]$ is a simple extension.

(⇐) Suppose $E = F[\alpha]$. For an intermediate subfield $F \subseteq K \subseteq F$, let $g(x) := m_{\alpha,K}(x)$. Notice that $m_{\alpha,F}(\alpha) = 0$ and $m_{\alpha,F}(x) \in K[x]$; and so $g(x)|m_{\alpha,F}(x)$. Hence there are only finitely many possibilities for $g(x)$. Next we show that $g(x)$ uniquely determines K; and so there are only finitely many possibilities for K. Let K' be the intermediate subfield generated by the coefficients of $g(x)$. So $K' \subseteq K$, $g(x) \in K'[x]$, and $g(x)$ is irreducible in $K[x]$. Thus $g(x)$ is irreducible in $K'[x]$. As $g(\alpha) = 0$, we deduce that $g(x) = m_{\alpha,K'}(x)$. Hence

$$[K'[\alpha] : K'] = \deg m_{\alpha,K'}(x) = \deg g(x) = \deg m_{\alpha,K}(x) = [K[\alpha] : K].$$

On the other hand, $K'[\alpha] \supseteq F[\alpha] = E$ and $K[\alpha] \supseteq F[\alpha] = E$. Therefore we have

$$[E : K] = [E : K'] = [E : K][K : K'],$$

which implies that $K = K'$; and so $g(x)$ uniquely determines K. □

Now that we have seen how strong separability condition can be, we investigate it in a more depth. Notice that since any algebraic extension of F can be embedded in \overline{F} where \overline{F} is an algebraic closure of F and \overline{F}/F is a normal extension, we have:

\overline{F}/F is Galois ⇔ \overline{F}/F is separable ⇔ any algebraic extension E/F is separable.

Next we want to find the precise condition on F so that \overline{F}/F is separable. To
this end, we need to come up a mechanism to determine if a given irreducible polynomial has multiple zeros or not. We start with a lemma.

Lemma 7. Suppose E/F is a field extension and $f, g \in F[x]$. Then $\gcd(f, g)$ in $F[x]$ is the same as $\gcd(f, g)$ in $E[x]$ up to a multiplication by an element of E^\times.

Proof. Suppose $q(x) = \gcd(f(x), g(x))$ in $F[x]$. Therefore there are $r(x), s(x) \in F[x]$ such that $r(x)f(x) + s(x)g(x) = q(x)$; and so

$$r(x)(f(x)/q(x)) + s(x)(g(x)/q(x)) = 1.$$

This implies that $\gcd(f(x)/q(x), g(x)/q(x)) = 1$ in $E[x]$. Thus $\gcd(f(x), g(x)) = q(x)$ in $E[x]$; and claim follows. \qed

In the next lecture we will prove:

Lemma 8. (1) $f(x) \in F[x]$ does not have multiple zeros if and only if

$$\gcd(f(x), f'(x)) = 1.$$

(2) Suppose $f(x)$ is irreducible in $F[x]$. Then there is an irreducible separable polynomial $g(x) \in F[x]$ and a positive integer k such that $f(x) = g(x^{p^k})$ where

$$p = \begin{cases} \text{char}(F) & \text{if char}(F) \neq 0, \\ 1 & \text{otherwise}. \end{cases}$$

In particular, if char$(F) = 0$, then any polynomial in $F[x]$ is separable.