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Main theorems of Galois theory.

So far we have proved the following:

Theorem 1. Suppose E/F is a finite extension. Then the following statements

are equivalent:

(1) E is a splitting field of a separable polynomial over F .

(2) |Aut(E/F )| = [E : F ].

(3) E/F is a Galois extension.

(4) F = Fix(Aut(E/F )).

(5) F = Fix(G) for some finite subgroup G of Aut(E).

Now we have all the needed to tools to prove:

Theorem 2. Suppose E/F is a finite Galois extension. Let

{K| F ⊆ K ⊆ E,K subfield} {H|H ≤ Gal(E/F )}
K

Ψ󰀁−−→ Gal(E/K)

Fix(H)
Φ←− 󰍌 H.

(1) Ψ is well-defined; that means E/K is a Galois extension. And Ψ and Φ

are inverse of each other.

(2) These maps give bijections between normal extensions K/F and normal

subgroups of Gal(E/F ).

(3) If K/F is a normal extension and F ⊆ K ⊆ E, then

Gal(K/F ) ≃ Gal(E/F )/Gal(E/K).

Proof. (1): For any α ∈ E, we have that mα,K(x)|mα,F (x). Hence all the zeros of

mα,K(x) are in E and all of them are distinct. Hence E/K is a normal separable

extension. Hence E/K is a Galois extension.

We have

(Φ ◦Ψ)(K) = Fix(Gal(E/K)) = K,
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and

(Ψ ◦ Φ)(H) = Gal(E/Fix(H)) = H.

(2) and (3): Suppose K/F is a normal extension. For any α ∈ K, mα,F (x) has

distinct zeros in E as E/F is separable. Hence K/F is a separable extension.

Therefore K/F is both normal and separable, which means that it is a Galois

extension.

Since E/F andK/F are normal extension, the restriction map r : Gal(E/F ) →
Gal(K/F ) is a well-defined onto group homomorphism. And ker r is clearly

Aut(E/K) = Gal(E/K). Hence we have that Ψ(K) is a normal subgroup of

Gal(E/F ) and

Gal(K/F ) ≃ Gal(E/F )/Gal(E/K).

Suppose H is a normal subgroup of Gal(E/F ). Let K := Fix(H). Suppose F

is an algebraic closure of F that has E as a subfield. To show K/F is a normal

extension, it is enough to show that for any 󰁥σ ∈ Aut(F/F ) we have 󰁥σ(K) = K.

Notice that, since 󰁥σ(F ) = F and K/F is a finite extension, it is enough to show

󰁥σ(K) ⊆ K. Since E/F is a normal extension, 󰁥σ(E) = E. So the restriction σ of

󰁥σ to E gives us an element of Gal(E/F ). We have to show for any α ∈ K,

󰁥σ(α) = σ(α) ∈ Fix(H).

Hence we have to show for any τ ∈ H, we have

τ(σ(α))
?
= σ(α).

Notice that since H is a normal subgroup of Gal(E/F ), we have σ−1 ◦ τ ◦ σ ∈ H.

Therefore

(σ−1 ◦ τ ◦ σ)(α) = α;

and claim follows. □

It is worth pointing out that in the above proof, we showed: if E/F is a

separable extension and K is an intermediate subfield, then K/F is a separable

extension. Later partially as part of your HW assignment you will strengthen

this result by showing that E/F is separable if and only if E/K and K/F are

separable. As a consequence of the main theorem of Galois theory, we also see

that if E/F is a normal extension, then E/K is normal; but K/F is often not

a normal extension. (If all the subgroups of Gal(E/F ) are normal, then for any
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intermediate subfield K we have that E/K and K/F are normal extensions; in

particular we get this when Gal(E/F ) is an abelian group.)

Let us also observe that the set of intermediate subfields of F ⊆ E and the set

of all subgroups of Gal(E/F ) are POSets with respect to the inclusion. And Ψ

and Φ are order reversing bijections:

if K1 ⊆ K2, then clearly Ψ(K1) ⊇ Ψ(K2); and if H1 ⊆ H2, then clearly

Φ(H1) ⊇ Φ(H2). Hence we get that

K1 ⊆ K2 ⇔ Ψ(K1) ⊇ Ψ(K2), and H1 ⊆ H2 ⇔ Φ(H1) ⊇ Φ(H2).

The following is a non-obvious corollary of the main theorem of Galois theory.

Theorem 3. Suppose E/F is a finite separable extension. Then there are only

finitely many intermediate subfields F ⊆ K ⊆ E.

Proof. Suppose {α1, . . . ,αn} is an F -basis of E. Let L be a splitting field of

f(x) :=
󰁔n

i=1 mαi,F (x). Since E/F is a separable extension, f(x) is a separable

polynomial. Hence L/F is a finite Galois extension. Hence by the main theorem

of Galois theory, there are only finitely many intermediate subfields F ⊆ K ⊆ L;

and claim follows. □

It is worth pointing out that L in the above proof is the smallest Galois exten-

sion of F that contains E as a subfield. That is why L is called the Galois closure

of E over F . When E/F is not separable, we still can do the above construction;

and we get the smallest normal extension of F that contains E as a subfield.

That is why in general we call L the normal closure of E over F .

Problem 4. Prove that the finite field extension Fp(x, y)/Fp(x
p, yp) has infinitely

many intermediate subfields.

Theorem 5. Suppose E/F is a finite field extension. Then there are only finitely

many intermediate subfields F ⊆ K ⊆ E if and only if there is α ∈ E such that

E = F [α]. (In this case α is called a primitive element and E/F is called a

simple extension.)

Corollary 6. Suppose E/F is a finite separable extension. Then E/F is a simple

extension.

Proof. This is an immediate corollary of the previous couple of theorems. □



4 GOLSEFIDY

Proof of Theorem 5. (⇒) Since E/F is a finite extension, E = F [α1, . . . ,αn] for

some αi’s. Using induction on n, it is clear that it is enough to prove the case of

n = 2. So suppose E = F [α1,α2].

If F is a finite field, then E is a finite field. And so E× is a cyclic group.

(Recall that in you have proved the following result in group theory: if G is a

finite group and for any positive integer n, |{gn = 1| g ∈ G}| ≤ n, then G is a

cyclic group. Using this result it is immediate that E× is cyclic if E is a finite

field.) Suppose E× = 〈α〉; and so E = F [α].

Suppose F is infinite and E = F [α1,α2]. Consider the family of intermediate

subfields {F [α1 + cα2]}c∈F . Since there are only finitely many intermediate sub-

fields and F is infinite, there are c, c′ ∈ F such that c ∕= c′ and K := F [α1+cα2] =

F [α1 + c′α2]. Therefore K contains (α1 + cα2)− (α1 + c′α2) = (c− c′)α2. Since

F ⊆ K and c − c′ ∈ F×, we deduce that α2 ∈ K. And so α1 ∈ K. Thus

K = F [α1,α2] = E, which implies E = F [α1 + cα2] is a simple extension.

(⇐) Suppose E = F [α]. For an intermediate subfield F ⊆ K ⊆ F , let g(x) :=

mα,K(x). Notice that mα,F (α) = 0 and mα,F (x) ∈ K[x]; and so g(x)|mα,F (x).

Hence there are only finitely many possibilities for g(x). Next we show that g(x)

uniquely determines K; and so there are only finitely many possibilities for K.

Let K ′ be the intermediate subfield generated by the coefficients of g(x). So

K ′ ⊆ K, g(x) ∈ K ′[x], and g(x) is irreducible in K[x]. Thus g(x) is irreducible

in K ′[x]. As g(α) = 0, we deduce that g(x) = mα,K′(x). Hence

[K ′[α] : K ′] = degmα,K′(x) = deg g(x) = degmα,K(x) = [K[α] : K].

On the other hand, K ′[α] ⊇ F [α] = E and K[α] ⊇ F [α] = E. Therefore we have

[E : K] = [E : K ′] = [E : K][K : K ′],

which implies that K = K ′; and so g(x) uniquely determines K. □

Now that we have seen how strong separability condition can be, we investigate

it in a more depth. Notice that since any algebraic extension of F can be embed-

ded in F where F is an algebraic closure of F and F/F is a normal extension,

we have:

F/F is Galois⇔ F/F is separable⇔ any algebraic extension E/F is separable.

Next we want to find the precise condition on F so that F/F is separable. To
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this end, we need to come up a mechanism to determine if a given irreducible

polynomial has multiple zeros or not. We start with a lemma.

Lemma 7. Suppose E/F is a field extension and f, g ∈ F [x]. Then gcd(f, g) in

F [x] is the same as gcd(f, g) in E[x] up to a multiplication by an element of E×.

Proof. Suppose q(x) = gcd(f(x), g(x)) in F [x]. Therefore there are r(x), s(x) ∈
F [x] such that r(x)f(x) + s(x)g(x) = q(x); and so

r(x)(f(x)/q(x)) + s(x)(g(x)/q(x)) = 1.

This implies that gcd(f(x)/q(x), g(x)/q(x)) = 1 in E[x]. Thus gcd(f(x), g(x)) =

q(x) in E[x]; and claim follows. □

In the next lecture we will prove:

Lemma 8. (1) f(x) ∈ F [x] does not have multiple zeros if and only if

gcd(f(x), f ′(x)) = 1.

(2) Suppose f(x) is irreducible in F [x]. Then there is an irreducible separable

polynomial g(x) ∈ F [x] and a positive integer k such that f(x) = g(xpk)

where

p =

󰀻
󰀿

󰀽
char(F ) if char(F ) ∕= 0,

1 otherwise.

In particular, if char(F ) = 0, then any polynomial in F [x] is separable.


