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MAIN THEOREMS OF (GALOIS THEORY.
So far we have proved the following:

Theorem 1. Suppose E/F is a finite extension. Then the following statements
are equivalent:

(1) E is a splitting field of a separable polynomial over F.

(2) |Aut(E/F)| = [E : F].

(3) E/F is a Galois extension.

(4) F = Fix(Aut(E/F)).

(5) F = Fix(G) for some finite subgroup G of Aut(E).

Now we have all the needed to tools to prove:

Theorem 2. Suppose E/F is a finite Galois extension. Let

(K| F C K CE,K subfield} {H| H < Gal(E/F)}
K LN Gal(E/K)
Fix(H) & H.

(1) VU is well-defined; that means E/K is a Galois extension. And V and ®
are inverse of each other.

(2) These maps give bijections between normal extensions K/F and normal
subgroups of Gal(E/F).

(3) If K/F is a normal extension and F C K C E, then

Gal(K/F) ~ Gal(E/F)/Gal(E/K).

Proof. (1): For any o € E, we have that mg, i (z)|mea r(x). Hence all the zeros of
Ma,x(x) are in £ and all of them are distinct. Hence £/ K is a normal separable
extension. Hence E/K is a Galois extension.
We have
(o V) (K) =Fix(Gal(E/K)) = K,
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and
(Vod)(H)=Gal(F/Fix(H)) = H.

(2) and (3): Suppose K/F is a normal extension. For any a € K, m, p(z) has
distinct zeros in £ as E/F is separable. Hence K/F is a separable extension.
Therefore K/F is both normal and separable, which means that it is a Galois
extension.

Since F/F and K/F are normal extension, the restriction map r : Gal(E/F) —
Gal(K/F) is a well-defined onto group homomorphism. And kerr is clearly
Aut(E/K) = Gal(E/K). Hence we have that U(K) is a normal subgroup of
Gal(E/F) and

Gal(K/F) ~ Gal(E/F)/Gal(E/K).

Suppose H is a normal subgroup of Gal(E/F). Let K := Fix(H). Suppose F
is an algebraic closure of F' that has E as a subfield. To show K/F' is a normal
extension, it is enough to show that for any & € Aut(F/F) we have (K) = K.
Notice that, since o(F') = F and K/F is a finite extension, it is enough to show
0(K) C K. Since E/F is a normal extension, o(E) = E. So the restriction o of
0 to E gives us an element of Gal(E/F'). We have to show for any o € K,

o(a) =o(a) € Fix(H).
Hence we have to show for any 7 € H, we have
7(o(a))

Notice that since H is a normal subgroup of Gal(E/F), we have 6 ' o100 € H.

= o(a).

Therefore
(0_1 oToo)(a)=q;

and claim follows. 0

It is worth pointing out that in the above proof, we showed: if F/F is a
separable extension and K is an intermediate subfield, then K/F is a separable
extension. Later partially as part of your HW assignment you will strengthen
this result by showing that E/F is separable if and only if £/K and K/F are
separable. As a consequence of the main theorem of Galois theory, we also see
that if £//F is a normal extension, then E/K is normal; but K/F is often not

a normal extension. (If all the subgroups of Gal(E/F') are normal, then for any
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intermediate subfield K we have that £/K and K/F are normal extensions; in
particular we get this when Gal(E/F) is an abelian group.)

Let us also observe that the set of intermediate subfields of /' C E and the set
of all subgroups of Gal(E/F') are POSets with respect to the inclusion. And ¥
and ® are order reversing bijections:

if K1 C Ks, then clearly W(K;) O U(K3); and if H; C H,, then clearly
®(H,) O ®(H,). Hence we get that

K CKy& W(Kl) D) W(Kg), and H C Hy, & (I)(H1> D) (I)(HQ)

The following is a non-obvious corollary of the main theorem of Galois theory.

Theorem 3. Suppose E/F is a finite separable extension. Then there are only
finitely many intermediate subfields FF C K C F.

Proof. Suppose {a,...,a,} is an F-basis of E. Let L be a splitting field of
f(z) == T[}, ma, r(x). Since E/F is a separable extension, f(z) is a separable
polynomial. Hence L/F is a finite Galois extension. Hence by the main theorem
of Galois theory, there are only finitely many intermediate subfields ' C K C L;

and claim follows. 0

It is worth pointing out that L in the above proof is the smallest Galois exten-
sion of F' that contains F as a subfield. That is why L is called the Galois closure
of E over F. When E//F is not separable, we still can do the above construction;
and we get the smallest normal extension of F' that contains E as a subfield.

That is why in general we call L the normal closure of E over F.

Problem 4. Prove that the finite field extension Fy(x,y)/F,(2?,y?) has infinitely

many intermediate subfields.

Theorem 5. Suppose E/F is a finite field extension. Then there are only finitely
many intermediate subfields FF C K C E if and only if there is a € E such that
E = Fla]. (In this case « is called a primitive element and E/F is called a

simple extension.)

Corollary 6. Suppose E/F is a finite separable extension. Then E/F is a simple

extension.

Proof. This is an immediate corollary of the previous couple of theorems. [l
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Proof of Theorem 5. (=) Since E/F is a finite extension, F = Flay, ..., ] for
some «;’s. Using induction on n, it is clear that it is enough to prove the case of
n = 2. So suppose E = Flay, as).

If F'is a finite field, then F is a finite field. And so E* is a cyclic group.
(Recall that in you have proved the following result in group theory: if G is a
finite group and for any positive integer n, [{¢" = 1| g € G}| < n, then G is a
cyclic group. Using this result it is immediate that E* is cyclic if E is a finite
field.) Suppose E* = (a); and so E = F|a].

Suppose F' is infinite and E = F[ay, as]. Consider the family of intermediate
subfields { F[a; + cag}eer. Since there are only finitely many intermediate sub-
fields and F is infinite, there are ¢, ¢’ € F such that ¢ # ¢ and K := Flay+cas| =
Flog + dag). Therefore K contains (o + caz) — (a1 + daz) = (¢ — ¢)as. Since
F C K and ¢ — ¢ € F*, we deduce that ap € K. And so a; € K. Thus
K = Flay, as] = E, which implies E = F|a; + cas] is a simple extension.

(<) Suppose E = F|a]. For an intermediate subfield ' C K C F, let g(x) :=
Ma,k(x). Notice that m, r(a) = 0 and m, p(r) € K[z]|; and so g(x)|mqr(z).
Hence there are only finitely many possibilities for g(z). Next we show that g(x)
uniquely determines K; and so there are only finitely many possibilities for K.
Let K’ be the intermediate subfield generated by the coefficients of g(x). So
K' C K, g(z) € K'[z], and g(x) is irreducible in K[z|. Thus g(z) is irreducible
in K'[z]. As g(a) = 0, we deduce that g(z) = m, x(z). Hence

[K'[a] : K'] = degma, o (2) = deg g(z) = degma k(2) = [K[o] : K].
On the other hand, K'[a] O Fla] = E and K[a] O Fla] = E. Therefore we have
[E:K|=[E:K']|=[E: K]K: K,
which implies that K = K’; and so g(x) uniquely determines K. O

Now that we have seen how strong separability condition can be, we investigate
it in a more depth. Notice that since any algebraic extension of F' can be embed-
ded in F where F is an algebraic closure of F and F/F is a normal extension,
we have:

F/F is Galois < I/ F is separable < any algebraic extension E/F is separable.

Next we want to find the precise condition on F so that F'/F is separable. To
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this end, we need to come up a mechanism to determine if a given irreducible

polynomial has multiple zeros or not. We start with a lemma.

Lemma 7. Suppose E/F is a field extension and f,g € F[x]. Then ged(f,g) in
F[z] is the same as ged(f, g) in E[z] up to a multiplication by an element of E*.

Proof. Suppose q(z) = ged(f(x),g(z)) in Flz]. Therefore there are r(x), s(z) €
Flz] such that r(z) f(z) + s(x)g(z) = ¢(x); and so

r(@)(f(2)/q(x)) + s(2)(9(x)/q(x)) = 1.
This implies that ged(f(z)/q(x),g9(x)/q(x)) = 1 in E[z]. Thus ged(f(x),g(x)) =
¢(z) in Elz]; and claim follows. O

In the next lecture we will prove:

Lemma 8. (1) f(x) € Flz] does not have multiple zeros if and only if

sed(f(2), f'(2)) = 1.
(2) Suppose f(x) is irreducible in F|x]. Then there is an irreducible separable
polynomial g(z) € F[z] and a positive integer k such that f(x) = g(a?")

where

char(F) if char(F) # 0,
p =
1 otherwise.

In particular, if char(F) = 0, then any polynomial in F|x] is separable.



