MATH200C, LECTURE 3

GOLSEFIDY

PERFECT FIELDS.

Lemma 1. (1) f(x) € Flx] does not have multiple zeros if and only if

ged(f(x). f/(x)) = 1.

(2) Suppose f(x) is irreducible in F[x]. Then there is an irreducible separable
polynomial g(x) € Flz] and a positive integer k such that f(x) = g(a?")
where

char(F) if char(F') # 0,

1 otherwise.

p =
In particular, if char(F') = 0, then any polynomial in Fz| is separable.

Proof. (1) Suppose F is an algebraic closure of F. As we proved in the previous
lecture, ged(f(z), f'(x)) over F is the same as ged(f(x), f'(z)) over F. So we
consider f(x) over F. Then f(z) = []i,(x — ;)™ for some distinct elements «;

of F. Based on the product theorem, we have
fia)y=> mi][(z—aymi@—a)™ " = ([ [e—a)™ ") Q_m: [ [(x — ).
=1 j#i i=1 =1 j#i

-~

g(x)

Notice that g(a;) = m; [],,;(ci — @) # 0; therefore ged(f, g) = 1. Hence

n

ged(f, f') = [J (& = ar)™".

i=1
Thus ged(f, f') = 1 if and only if m; = 1 for any ¢; and claim follows.

(2) If f(x) is separable, we let £k = 0 and g(z) = f(z). So assume f(z) is not
separable. Since f(x) is irreducible, it means that f(x) has multiple zeros. Hence
by the first part, ged(f, f') # 1. Since f(z) is irreducible, it means ged(f, f') = f.
As deg f' < deg f and f|f’, we deduce that f' = 0. Suppose f(z) = > ., a;z";
f' = 0 implies that ia; = 0 for any 4. If char(F") = 0, then ia; = 0 implies a; =0
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for i # 0; this means f(x) is a constant which contradicts the assumption that
f(z) is irreducible.

Next we assume that char(F) = p > 0. Then ia; = 0 implies a; = 0 when p 1 i.
Hence f(z) = g1(xP) for some g, (z) € Fl[z].

Claim. g;(z) is irreducible in Fz].

Proof of Claim. Suppose to the contrary that g,(z) = hy(z)he(z) and deg h; >
0. Then f(x) = hy(2P)he(2?), which contradicts the assumption that f(x) is
irreducible in F[x]. O

By the strong induction hypothesis, there is a separable irreducible polynomial
g(z) € Flz] such that g;(z) = g(2*"). Hence

f@) = qi(a") = g((a?)") = g(a” ).
O

Theorem 2. Suppose F is a field and F is an algebraic closure of F. Then the

following statements are equivalent.

(1) Either char(F) =0, or char(F) =p >0 and F? = F.
(2) F/F is a Galois group.
(3) Any algebraic extension E/F is separable.

Proof. (1)=(2) The assumption F? = F implies that o : F' — F,0(a) := da? is an
automorphism of F. Hence o € Aut(F); and so for any a € F, there is @’ € F
such that (a/)"" = a.

Since F'/F is a normal extension, to show it is a Galois extension it is enough
to prove that it is a separable extension. For a € F, since Ma,r(x) is irreducible
in F[x] by the previous lemma, there is a separable polynomial g(z) € F[z] such
that ma,p(z) = g(z*"). Suppose g(z) = >or o a;x'. By the above comment, there
are a; € F such that (a})*" = a;. Thus

n

n n
mmF(x) _ Zaixipk _ Z(ag)pkxipk _ (Z a;xi)pk‘
i=0 i=0

=0

As mg () is irreducible in Flz] and Y7 alz’ € F[x], we have p* = 1. Hence
Mma,r(x) = g(x) is separable; and claim follows.
(2)=(3) Since E/F is algebraic, E can be embedded into F. Since F/F is

separable, we deduce that E/F is separable.
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(3)=-(1) (In the midst of questions, I forgot to prove this during lecture.) If
char(F') = 0, there is nothing to prove. So we assume that char(F) = p > 0. For
a € F,let a € F be a zero of 27 — a = 0. Hence m, p(z)|2? —a = 2P — of =
(x — a)P. Since F/F is separable, m,, p(x) does not have multiple zeros. Hence
Ma,r(x) = x — «, which implies a € F; and so a = o € FP. This implies that
P =F. U

A field is called perfect if it satisfies the above properties.

(GALOIS GROUP OF FINITE FIELDS

Suppose F, is an algebraic closure of F,. Let’s recall that we can identify F
with {a € Fyla”" = a} and F, = ;e Fpa. As F2 = F,, F, is a perfect field.
Hence F,/F, is a Galois extension. Notice that o : F, — F,,0(a) := o is an
embedding and, since 2P — a has a zero in F,, o is onto. Hence o € Gal(F,/F,).

We know that I« is a splitting field of 27" — 1 over F,. Hence F,i/F, is a
normal extension. Since [, is a perfect field, F,q/F, is a separable extension.
Hence F,a/F, is a Galois extension. Hence |Gal(F,/F,)| = [Fp« : F)] = d.
Since F,q/F, is a normal extension, oq := O'|]Fp . is in Gal(IF,a/FF,,). Notice that
ola) = a?" = a for any a € F,a. Hence o4 = id; and so o(cg)|d. Suppose
o(cq) =: d. Then for any o € Fpu, we have a = ¢ (a) = a*”. And so any
element of Fa is a zero of «*" — . Therefore pd < deg(xpd/ — ) = p¥, which
implies that d < d’. As d'|d and d < d’, we deduce that d = d’. Hence

Gal(F,i/F,) = (04) ~ Z/dZ.

This implies that Gal(F,/F,) ~ Hm 7 /dZ; and in your HW assignment you have
seen how this can help you to show [F,, does not have a non-trivial subfield £ such
that [F, : E] < .

The following remarks were mentioned in the lecture in response to your ques-
tions. I am including proof of some of them here.

Question. Is Gal(F,/F,) = (¢)? No, Gal(F,/F,) is a very large compact
group; in particular it is not countable. (o) is, however, dense in Gal(F,/F,).
Notice that 1&12 /dZ is a closed subgroup of [[,Z/dZ, open sets in the product
topology are of the form X X [[;,4Z/dZ where S is a finite subset of Z* and
X is a subset of [[,.gZ/dZ, and under the above isomorphism o is sent to
1= {1+dZ} € [[,Z/dZ. 1t {za+dZ}a € (imZ/dZ) N (X x []yy5 Z/dZ), then
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T, = xq (mod d) for any d € S where n :=[],.qd. Hence

vl = {x, +dZ}4 € X x (][ 2/dz);
dgs

this means (1) intersects any non-empty open subset of @Z/ dZ; and so (1) is
dense in l'&nZ/dZ. Hence (o) is dense in Gal(F,/F,).
Question. What is the topology on Gal(F/F)? Let’s recall that

0: Gal(F/F) — lim Gal(E/F),0(c) = {o|p}x

is an isomorphism where Jim _ Gal(E/F) is equal to

{{or}r € HGal(E/F)|E/F is finite Galois; E C E' implies op|p = op}.
E

We consider the discrete topology on finite groups Gal(E/F); and by Tychonoft’s
theorem [ [, Gal(E/F') is a compact group. One can check that lm Gal(E/F) is
a closed subgroup of [[, Gal(E/F); and so it is a compact group. An open subset
of [[, Gal(E/F) is of the form X X [[ 5,5 Gal(E/F) where S = {E, ..., E,}isa
finite set consisting of some finite Galois extensions of F'. And so the collections
sets of the form [[p g{idr} X [[ g Gal(E/F) make a basis for neighborhoods
of the identity. Notice that there is a finite Galois extension E’ of F' such that
Ui, E: C E'. And so

0 ([ [{ide} x [ Gal(E/F)) Nlim Gal(E/F)) 2 {0 € Gal(F/F)|o|s = idg};
EeS E¢S

and 0({o € Gal(F/F)|o|r = idg}) is an open subset of MG&I(E/F). So overall

we get that {ker rg}p forms a basis of neighborhoods of the identity of Gal(F/F)

where E runs over finite Galois extensions of F' and
rg: Gal(F/F) — Gal(E/F),rg(0) == ol|g

is the restriction map.

Question. Is any subfield of F, finite? No, Fp has many infinite subfields.
In fact, similar to the finite Galois extensions, we can understand intermediate
subfields of E/F using subgroups of Gal(£/F'). In the infinite Galois extension
case, however, we have to restrict ourselves to closed subgroups: there is a bijec-
tion between intermediate subfields of E/F and closed subgroups of Gal(E/F).
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For instance, one can check that

By :=|JFr
n=1
is a subfield of Fp; and one has
Gal(Ey/F),) ~ I'&nZ/Z”Z =: Za;

is the group of 2-adic integers. (This can be regarded as a definition for this

group.)
CYCLOTOMIC EXTENSIONS

Suppose either char(F) is either 0, or char(F) = p > 0 and p {t n. Let E be
a splitting field of 2™ — 1 over F'. Since FE is a splitting field over F', E/F is a
normal extension. If char(F) =0, E/F is separable. Suppose char(F’) =p > 0.

n—1

Since p { n, nz"! is not zero. Since 0 is not a zero of ™ — 1 and nz"~! # 0,

"~1) = 1. Hence all the zeros of z" — 1 are distinct in E. Thus

ged(z™ — 1, nx
E/F is separable, and pu, := {¢ € E*|(" = 1} has n elements. Notice that for
any positive integer d we have |{¢ € pu,| (¢ = 1}| < d; and so p,, is a cyclic group

of order n. Thus there is (,, € E* such that

tn ={1,Cn, ..., 7Y ~ 20T
Overall we have that £ = F[1,(,,...,(" '] = F[¢,] is a Galois extension of
F. For any o € Gal(E/F), o is uniquely determined by o((,) as E = F[(,].
Since 0((,) is a zero of 2" — 1, 0((,) € pyn; that means o(¢,) = (2 for some
a € {0,...,n—1}. As o is an automorphism, the multiplicative order of (, is

equal to the multiplicative order of o((,) = (%; hence

n=0(C) = 0(a(Cn)) = 0((y) = 0(¢n)/ ged(0(Cn), @) = 1/ ged(n, a),

which implies that ged(a,n) = 1. Let 6 : Gal(E/F) — (Z/nZ)*,0(0) = a, + nZ
where o((,) = (2.

Claim. # is a group homomorphism.

Proof of Claim. We have

G = (01002)(Gr) = 1(G7) = (G = (7)™ = G,

Hence Gy, 00y = G0y 0y, (mod n). Hence O(cy 0 03) = 0(01)0(02). We also notice

that 6(idg) = 1 and so claim follows.
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Claim. @ is injective.

Proof of Claim. This is immediate as ¢ is uniquely determined by o((,) and
0(¢,) is uniquely determined by 6(¢) = a, (mod n).

Overall we get the following result.

Proposition 3. Suppose either char(F) =0, or char(F) =p >0 and ptn. Let
E be a splitting field of ™ — 1 over F. Then E/F is Galois and Gal(E/F) can
be embedded into (Z/nZ)*.

Next we want to show that the above mentioned 6 is an isomorphism when

F = Q. To motivate our next definition, we start with the following lemma.

Lemma 4. (1) Suppose E/F is a finite Galois extension. For a € E, let

fo(@) = lsecae/m (@ — o). Then fo(z) € Flz] and ma p(x)|fo(z).
(2) Suppose Fla] is a finite Galois extension of F'. Then fu(x) = mqr(x).

Proof. (1) For any 7 € Gal(E/F),
r(fal2))= I @-r@)=]] @-o)= /).

o€Gal(E/F) s€Gal(E/F)
Hence f.(z) € Fix(Gal(E/F))[x] = Flz]. As fo(a) = 0, we deduce that
Mo ()| fa ().
(2) We have that deg f,(z) = |Gal(E/F)| = [E : F| = [Fla] : F] = degmg r(z);
and claim follows using part (1). O

So if 6 is an isomorphism, then m¢, () is equal to J[,<,<, sed(am=1 (% — 1)
We let
2,0)= ] (- eCh
1<a<n,ged(a,n)=1

— e2m/n.

where (, : ; and it is called the n-th cyclotomic polynomial. In the next

lecture we will prove that ®,(x) is in Z[z] and it is irreducible in Q[z]. Using
this, we will deduce that Gal(Q[(,]/Q) ~ (Z/nZ)*.



