MATH200C, LECTURE 3

GOLSEFIDY

Perfect fields.

Lemma 1. (1) $f(x) \in F[x]$ does not have multiple zeros if and only if

$$\gcd(f(x), f'(x)) = 1.$$

(2) Suppose $f(x)$ is irreducible in $F[x]$. Then there is an irreducible separable polynomial $g(x) \in F[x]$ and a positive integer k such that $f(x) = g(x^k)$ where

$$p = \begin{cases} \text{char}(F) & \text{if char}(F) \neq 0, \\ 1 & \text{otherwise}. \end{cases}$$

In particular, if char(F) = 0, then any polynomial in $F[x]$ is separable.

Proof. (1) Suppose \overline{F} is an algebraic closure of F. As we proved in the previous lecture, $\gcd(f(x), f'(x))$ over F is the same as $\gcd(f(x), f'(x))$ over \overline{F}. So we consider $f(x)$ over \overline{F}. Then $f(x) = \prod_{i=1}^{n}(x - \alpha_i)^{m_i}$ for some distinct elements α_i of \overline{F}. Based on the product theorem, we have

$$f'(x) = \sum_{i=1}^{n} m_i \prod_{j \neq i}(x - \alpha_j)^{m_j} (x - \alpha_i)^{m_i - 1} = \left(\prod_{i=1}^{n} (x - \alpha_i)^{m_i - 1} \right) \left(\sum_{i=1}^{n} m_i \prod_{j \neq i}(x - \alpha_j)^{m_j} \right).$$

Notice that $g(\alpha_i) = m_i \prod_{j \neq i}(\alpha_i - \alpha_j) \neq 0$; therefore $\gcd(f, g) = 1$. Hence

$$\gcd(f, f') = \prod_{i=1}^{n} (x - \alpha_i)^{m_i - 1}.$$

Thus $\gcd(f, f') = 1$ if and only if $m_i = 1$ for any i; and claim follows.

(2) If $f(x)$ is separable, we let $k = 0$ and $g(x) = f(x)$. So assume $f(x)$ is not separable. Since $f(x)$ is irreducible, it means that $f(x)$ has multiple zeros. Hence by the first part, $\gcd(f, f') \neq 1$. Since $f(x)$ is irreducible, it means $\gcd(f, f') = f$. As $\deg f' < \deg f$ and $f \mid f'$, we deduce that $f' = 0$. Suppose $f(x) = \sum_{i=0}^{n} a_i x^i$; $f' = 0$ implies that $ia_i = 0$ for any i. If char(F) = 0, then $ia_i = 0$ implies $a_i = 0$
for \(i \neq 0 \); this means \(f(x) \) is a constant which contradicts the assumption that \(f(x) \) is irreducible.

Next we assume that \(\text{char}(F) = p > 0 \). Then \(ia_i = 0 \) implies \(a_i = 0 \) when \(p \nmid i \).

Hence \(f(x) = g_1(x^p) \) for some \(g_1(x) \in F[x] \).

Claim. \(g_1(x) \) is irreducible in \(F[x] \).

Proof of Claim. Suppose to the contrary that \(g_1(x) = h_1(x)h_2(x) \) and \(\deg h_i > 0 \). Then \(f(x) = h_1(x^p)h_2(x^p) \), which contradicts the assumption that \(f(x) \) is irreducible in \(F[x] \).

By the strong induction hypothesis, there is a separable irreducible polynomial \(g(x) \in F[x] \) such that \(g_1(x) = g(x^{p^k}) \). Hence

\[
f(x) = g_1(x^p) = g((x^p)^{p^k}) = g(x^{p^{k+1}}).
\]

\(\Box \)

Theorem 2. Suppose \(F \) is a field and \(\overline{F} \) is an algebraic closure of \(F \). Then the following statements are equivalent.

1. Either \(\text{char}(F) = 0 \), or \(\text{char}(F) = p > 0 \) and \(F^p = F \).
2. \(\overline{F}/F \) is a Galois group.
3. Any algebraic extension \(E/F \) is separable.

Proof. (1)\(\Rightarrow \)(2) The assumption \(F^p = F \) implies that \(\sigma : F \to F, \sigma(a) := a^p \) is an automorphism of \(F \). Hence \(\sigma^k \in \text{Aut}(F) \); and so for any \(a \in F \), there is \(a' \in F \) such that \((a')^{p^k} = a \).

Since \(\overline{F}/F \) is a normal extension, to show it is a Galois extension it is enough to prove that it is a separable extension. For \(\alpha \in \overline{F} \), since \(m_{\alpha,F}(x) \) is irreducible in \(F[x] \) by the previous lemma, there is a separable polynomial \(g(x) \in F[x] \) such that \(m_{\alpha,F}(x) = g(x^{p^k}) \). Suppose \(g(x) = \sum_{i=0}^n a_i x^i \). By the above comment, there are \(a'_i \in F \) such that \((a'_i)^{p^k} = a_i \). Thus

\[
m_{\alpha,F}(x) = \sum_{i=0}^n a_i x^{ip^k} = \sum_{i=0}^n (a'_i)^{p^k} x^{ip^k} = (\sum_{i=0}^n a'_i x^i)^{p^k}.
\]

As \(m_{\alpha,F}(x) \) is irreducible in \(F[x] \) and \(\sum_{i=0}^n a'_i x^i \in F[x] \), we have \(p^k = 1 \). Hence \(m_{\alpha,F}(x) = g(x) \) is separable; and claim follows.

(2)\(\Rightarrow \)(3) Since \(E/F \) is algebraic, \(E \) can be embedded into \(\overline{F} \). Since \(\overline{F}/F \) is separable, we deduce that \(E/F \) is separable.
(3) ⇒ (1) (In the midst of questions, I forgot to prove this during lecture.) If char(F) = 0, there is nothing to prove. So we assume that char(F) = p > 0. For a ∈ F, let α ∈ F be a zero of xp − a = 0. Hence \(m_{α,F}(x)|x^p − α = x^p − α^p = (x − α)^p \). Since \(F/F \) is separable, \(m_{α,F}(x) \) does not have multiple zeros. Hence \(m_{α,F}(x) = x − α \), which implies \(α ∈ F \); and so \(a = α^p ∈ F^p \). This implies that \(F^p = F \).

A field is called perfect if it satisfies the above properties.

Galois group of finite fields

Suppose \(\mathbb{F}_p \) is an algebraic closure of \(\mathbb{F}_p \). Let’s recall that we can identify \(\mathbb{F}_{p^d} \) with \(\{ α ∈ \mathbb{F}_p | α^{pd} = α \} \) and \(\mathbb{F}_p = \bigcup_{d ∈ \mathbb{Z}_+} \mathbb{F}_{p^d} \). As \(\mathbb{F}_p = \mathbb{F}_p, \mathbb{F}_p \) is a perfect field. Hence \(\mathbb{F}_p/\mathbb{F}_p \) is a Galois extension. Notice that \(σ : \mathbb{F}_p → \mathbb{F}_p, σ(α) := α^p \) is an embedding and, since \(x^p − α \) has a zero in \(\mathbb{F}_p, σ \) is onto. Hence \(σ ∈ \text{Gal}(\mathbb{F}_p/\mathbb{F}_p) \).

We know that \(\mathbb{F}_{p^d} \) is a splitting field of \(xp^d − x \) over \(\mathbb{F}_p \). Hence \(\mathbb{F}_{p^d}/\mathbb{F}_p \) is a normal extension. Since \(\mathbb{F}_p \) is a perfect field, \(\mathbb{F}_{p^d}/\mathbb{F}_p \) is a separable extension. Hence \(\mathbb{F}_{p^d}/\mathbb{F}_p \) is a Galois extension. Hence \(|\text{Gal}(\mathbb{F}_{p^d}/\mathbb{F}_p)| = |\mathbb{F}_{p^d} : \mathbb{F}_p| = d \).

Since \(\mathbb{F}_{p^d}/\mathbb{F}_p \) is a normal extension, \(σ_d := σ|_{\mathbb{F}_{p^d}} \) is in \(\text{Gal}(\mathbb{F}_{p^d}/\mathbb{F}_p) \). Notice that \(σ_d^d(α) = α^{pd} = α \) for any \(α ∈ \mathbb{F}_{p^d} \). Hence \(σ_d^d = \text{id} \); and so \(o(σ_d)|d \). Suppose \(o(σ_d) =: d' \). Then for any \(α ∈ \mathbb{F}_{p^d} \), we have \(α = σ_d^d(α) = α^{pd'} \). And so any element of \(\mathbb{F}_{p^d} \) is a zero of \(xp^{d'} − x \). Therefore \(p^d ≤ \text{deg}(xp^{d'} − x) = p^{d'} \), which implies that \(d ≤ d' \). As \(d'|d \) and \(d ≤ d' \), we deduce that \(d = d' \). Hence

\[\text{Gal}(\mathbb{F}_{p^d}/\mathbb{F}_p) = \langle σ_d \rangle ∼ \mathbb{Z}/d\mathbb{Z}. \]

This implies that \(\text{Gal}(\mathbb{F}_p/\mathbb{F}_p) ∼ \varprojlim \mathbb{Z}/d\mathbb{Z} \); and in your HW assignment you have seen how this can help you to show \(\mathbb{F}_p \) does not have a non-trivial subfield \(E \) such that \(\mathbb{F}_p : E < ∞ \).

The following remarks were mentioned in the lecture in response to your questions. I am including proof of some of them here.

Question. Is \(\text{Gal}(\mathbb{F}_p/\mathbb{F}_p) = \langle σ \rangle ^? \) No, \(\text{Gal}(\mathbb{F}_p/\mathbb{F}_p) \) is a very large compact group; in particular it is not countable. \(\langle σ \rangle \) is, however, dense in \(\text{Gal}(\mathbb{F}_p/\mathbb{F}_p) \). Notice that \(\varprojlim \mathbb{Z}/d\mathbb{Z} \) is a closed subgroup of \(\prod d \mathbb{Z}/d\mathbb{Z} \); open sets in the product topology are of the form \(X × \prod_{d ∈ S} \mathbb{Z}/d\mathbb{Z} \) where \(S \) is a finite subset of \(\mathbb{Z}_+ \) and \(X \) is a subset of \(\prod_{d ∈ S} \mathbb{Z}/d\mathbb{Z} \), and under the above isomorphism \(σ \) is sent to \(1 := \{ 1 + d\mathbb{Z} \}_d ∈ \prod_d \mathbb{Z}/d\mathbb{Z} \). If \(\{ x_d + d\mathbb{Z} \}_d ∈ (\varprojlim \mathbb{Z}/d\mathbb{Z}) ∩ (X × \prod_{d ∈ S} \mathbb{Z}/d\mathbb{Z}) \), then
\[x_n \equiv x_d \pmod{d} \text{ for any } d \in S \text{ where } n := \prod_{d \in S} d. \text{ Hence} \]
\[x_n \mathbb{I} = \{x_n + d\mathbb{Z}\}_d \in X \times \left(\prod_{d \in S} \mathbb{Z}/d\mathbb{Z} \right) ; \]

this means \(\mathbb{I} \) intersects any non-empty open subset of \(\varprojlim \mathbb{Z}/d\mathbb{Z} \); and so \(\mathbb{I} \) is dense in \(\varprojlim \mathbb{Z}/d\mathbb{Z} \). Hence \(\langle \sigma \rangle \) is dense in \(\text{Gal}(\mathbb{F}_p/\mathbb{F}_p) \).

Question. What is the topology on \(\text{Gal}(\overline{F}/F) \)? Let’s recall that

\[\theta : \text{Gal}(\overline{F}/F) \to \varprojlim_{E} \text{Gal}(E/F), \theta(\sigma) := \{\sigma|_E\}_E \]

is an isomorphism where \(\varprojlim_{E} \text{Gal}(E/F) \) is equal to

\[\{\{\sigma_E\}_E \in \prod_{E} \text{Gal}(E/F)/|E/F \text{ is finite Galois;} E \subseteq E' \text{ implies } \sigma_{E'}|_E = \sigma_E \}. \]

We consider the discrete topology on finite groups \(\text{Gal}(E/F) \); and by Tychonoff’s theorem \(\prod_{E} \text{Gal}(E/F) \) is a compact group. One can check that \(\varprojlim_{E} \text{Gal}(E/F) \) is a closed subgroup of \(\prod_{E} \text{Gal}(E/F) \); and so it is a compact group. An open subset of \(\prod_{E} \text{Gal}(E/F) \) is of the form \(X \times \prod_{E \notin S} \text{Gal}(E/F) \) where \(S = \{E_1, \ldots, E_n\} \) is a finite set consisting of some finite Galois extensions of \(F \). And so the collections sets of the form \(\prod_{E \in S} \{\text{id}_E\} \times \prod_{E \notin S} \text{Gal}(E/F) \) make a basis for neighborhoods of the identity. Notice that there is a finite Galois extension \(E' \) of \(F \) such that \(\bigcup_{i=1}^{n} E_i \subseteq E' \). And so

\[\theta^{-1}((\prod_{E \in S} \{\text{id}_E\} \times \prod_{E \notin S} \text{Gal}(E/F)) \cap \varprojlim_{E} \text{Gal}(E/F)) \supseteq \{\sigma \in \text{Gal}(\overline{F}/F)|\sigma|_E = \text{id}_E\} ; \]

and \(\theta(\{\sigma \in \text{Gal}(\overline{F}/F)|\sigma|_E = \text{id}_E\}) \) is an open subset of \(\varprojlim \text{Gal}(E/F) \). So overall we get that \{ker \(r_E \)\}_E forms a basis of neighborhoods of the identity of \(\text{Gal}(\overline{F}/F) \) where \(E \) runs over finite Galois extensions of \(F \) and

\[r_E : \text{Gal}(\overline{F}/F) \to \text{Gal}(E/F), r_E(\sigma) := \sigma|_E \]

is the restriction map.

Question. Is any subfield of \(\mathbb{F}_p \) finite? No, \(\mathbb{F}_p \) has many infinite subfields. In fact, similar to the finite Galois extensions, we can understand intermediate subfields of \(E/F \) using subgroups of \(\text{Gal}(E/F) \). In the infinite Galois extension case, however, we have to restrict ourselves to closed subgroups: there is a bijection between intermediate subfields of \(E/F \) and closed subgroups of \(\text{Gal}(E/F) \).
For instance, one can check that
\[E_2 := \bigcup_{n=1}^{\infty} \mathbb{F}_{p^n} \]
is a subfield of \(\mathbb{F}_p \); and one has
\[\text{Gal}(E_2/\mathbb{F}_p) \simeq \lim_{\to} \mathbb{Z}/2^n\mathbb{Z} =: \mathbb{Z}_2; \]
is the group of 2-adic integers. (This can be regarded as a definition for this group.)

Cyclotomic extensions

Suppose either \(\text{char}(F) \) is either 0, or \(\text{char}(F) = p > 0 \) and \(p \nmid n \). Let \(E \) be a splitting field of \(x^n - 1 \) over \(F \). Since \(E \) is a splitting field over \(F \), \(E/F \) is a normal extension. If \(\text{char}(F) = 0 \), \(E/F \) is separable. Suppose \(\text{char}(F) = p > 0 \). Since \(p \nmid n \), \(nx^{n-1} \) is not zero. Since 0 is not a zero of \(x^n - 1 \) and \(nx^{n-1} \neq 0 \), \(\gcd(x^n - 1, nx^{n-1}) = 1 \). Hence all the zeros of \(x^n - 1 \) are distinct in \(E \). Thus \(E/F \) is separable, and \(\mu_n := \{ \zeta \in E^\times | \zeta^n = 1 \} \) has \(n \) elements. Notice that for any positive integer \(d \) we have \(|\{ \zeta \in \mu_n | \zeta^d = 1 \} | \leq d \); and so \(\mu_n \) is a cyclic group of order \(n \). Thus there is \(\zeta_n \in E^\times \) such that
\[\mu_n = \{ 1, \zeta_n, \ldots, \zeta_n^{n-1} \} \simeq \mathbb{Z}/n\mathbb{Z}. \]

Overall we have that \(E = F[1, \zeta_n, \ldots, \zeta_n^{n-1}] = F[\zeta_n] \) is a Galois extension of \(F \). For any \(\sigma \in \text{Gal}(E/F) \), \(\sigma \) is uniquely determined by \(\sigma(\zeta_n) \) as \(E = F[\zeta_n] \). Since \(\sigma(\zeta_n) \) is a zero of \(x^n - 1 \), \(\sigma(\zeta_n) \in \mu_n \); that means \(\sigma(\zeta_n) = \zeta_n^a \) for some \(a \in \{0, \ldots, n-1\} \). As \(\sigma \) is an automorphism, the multiplicative order of \(\zeta_n \) is equal to the multiplicative order of \(\sigma(\zeta_n) = \zeta_n^a \); hence
\[n = o(\zeta_n) = o(\sigma(\zeta_n)) = o(\zeta_n^a) = o(\zeta_n)/\gcd(o(\zeta_n), a) = n/\gcd(n, a), \]
which implies that \(\gcd(a, n) = 1 \). Let \(\theta : \text{Gal}(E/F) \to (\mathbb{Z}/n\mathbb{Z})^\times, \theta(\sigma) := a_\sigma + n\mathbb{Z} \)
where \(\sigma(\zeta_n) = \zeta_n^{a_\sigma} \).

Claim. \(\theta \) is a group homomorphism.

Proof of Claim. We have
\[\zeta_n^{a_{\sigma_1 \circ \sigma_2}} = (\sigma_1 \circ \sigma_2)(\zeta_n) = \sigma_1(\zeta_n^{a_{\sigma_2}}) = \sigma_1(\zeta_n)^{a_{\sigma_2}} = (\zeta_n^{a_{\sigma_1}})^{a_{\sigma_2}} = \zeta_n^{a_{\sigma_1} + a_{\sigma_2}}. \]

Hence \(a_{\sigma_1 \circ \sigma_2} \equiv a_{\sigma_1} a_{\sigma_2} \) (mod \(n \)). Hence \(\theta(\sigma_1 \circ \sigma_2) = \theta(\sigma_1) \theta(\sigma_2) \). We also notice that \(\theta(\text{id}_E) = 1 \) and so claim follows.
Claim. \(\theta \) is injective.

Proof of Claim. This is immediate as \(\sigma \) is uniquely determined by \(\sigma(\zeta_n) \) and \(\sigma(\zeta_n) \) is uniquely determined by \(\theta(\sigma) = a_\sigma \mod n \).

Overall we get the following result.

Proposition 3. Suppose either \(\text{char}(F) = 0 \), or \(\text{char}(F) = p > 0 \) and \(p \nmid n \). Let \(E \) be a splitting field of \(x^n - 1 \) over \(F \). Then \(E/F \) is Galois and \(\text{Gal}(E/F) \) can be embedded into \((\mathbb{Z}/n\mathbb{Z})^\times\).

Next we want to show that the above mentioned \(\theta \) is an isomorphism when \(F = \mathbb{Q} \). To motivate our next definition, we start with the following lemma.

Lemma 4. (1) Suppose \(E/F \) is a finite Galois extension. For \(\alpha \in E \), let
\[f_\alpha(x) := \prod_{\sigma \in \text{Gal}(E/F)} (x - \sigma(\alpha)). \]
Then \(f_\alpha(x) \in F[x] \) and \(m_{\alpha,F}(x) \mid f_\alpha(x) \).

(2) Suppose \(F[\alpha] \) is a finite Galois extension of \(F \). Then \(f_\alpha(x) = m_{\alpha,F}(x) \).

Proof. (1) For any \(\tau \in \text{Gal}(E/F) \),
\[\tau(f_\alpha(x)) = \prod_{\sigma \in \text{Gal}(E/F)} (x - \tau(\sigma(\alpha))) = \prod_{\sigma \in \text{Gal}(E/F)} (x - \sigma(\alpha)) = f_\alpha(x). \]
Hence \(f_\alpha(x) \in \text{Fix}(\text{Gal}(E/F))[x] = F[x] \). As \(f_\alpha(\alpha) = 0 \), we deduce that \(m_{\alpha,F}(x) \mid f_\alpha(x) \).

(2) We have that \(\text{deg } f_\alpha(x) = |\text{Gal}(E/F)| = |E : F| = [F[\alpha] : F] = \text{deg } m_{\alpha,F}(x) \); and claim follows using part (1).

So if \(\theta \) is an isomorphism, then \(m_{\zeta_n,\mathbb{Q}}(x) \) is equal to \(\prod_{1 \leq a \leq n, \gcd(a,n) = 1} (x - \zeta_n^a) \).

We let
\[\Phi_n(x) := \prod_{1 \leq a \leq n, \gcd(a,n) = 1} (x - \zeta_n^a) \in \mathbb{C}[x] \]
where \(\zeta_n := e^{2\pi i/n} \); and it is called the \(n \)-th cyclotomic polynomial. In the next lecture we will prove that \(\Phi_n(x) \) is in \(\mathbb{Z}[x] \) and it is irreducible in \(\mathbb{Q}[x] \). Using this, we will deduce that \(\text{Gal}(\mathbb{Q}[\zeta_n]/\mathbb{Q}) \simeq (\mathbb{Z}/n\mathbb{Z})^\times \).