MATH200C, LECTURE 4

GOLSEFIDY

Cyclotomic polynomials

In the previous lecture we proved that

$$
\theta: \operatorname{Gal}\left(\mathbb{Q}\left[\zeta_{n}\right] / \mathbb{Q}\right) \rightarrow(\mathbb{Z} / n \mathbb{Z})^{\times}, \theta(\sigma):=a_{\sigma}+n \mathbb{Z}
$$

where $\theta\left(\zeta_{n}\right)=\zeta_{n}^{a_{\sigma}}$ is an injective group homomorphism. And in order to show it is an isomorphism, we defined the n-th cyclotomic polynomial:

$$
\Phi_{n}(x):=\prod_{1 \leq a \leq n, \operatorname{gcd}(a, n)=1}\left(x-\zeta_{n}^{a}\right) \in \mathbb{C}[x] .
$$

Lemma 1.

$$
\prod_{d \mid n} \Phi_{n / d}(x)=x^{n}-1
$$

Proof.

$$
\begin{aligned}
x^{n}-1 & =\prod_{i=0}^{n-1}\left(x-\zeta_{n}^{i}\right) \\
& =\prod_{d \mid n} \prod_{\operatorname{gcd}(i, n)=d, 0 \leq i \leq n}\left(x-\zeta_{n}^{i}\right) \\
& =\prod_{d \mid n} \prod_{0 \leq j \leq n / d, \operatorname{gcd}(j, n / d)=1}\left(x-\zeta_{n}^{d j}\right) \\
& =\prod_{d \mid n} \prod_{0 \leq j \leq n / d, \operatorname{gcd}(j, n / d)=1}\left(x-\zeta_{n / d}^{j}\right) \\
& =\prod_{d \mid n} \Phi_{n / d}(x) .
\end{aligned}
$$

Lemma 2. $\Phi_{n}(x) \in \mathbb{Z}[x]$.

Proof. We proceed by strong induction on n. We have that $\Phi_{1}(x)=x-1 \in \mathbb{Z}[x]$, which gives us the base of induction. By the previous lemma, we have that

$$
\Phi_{n}(x)=\frac{x^{n}-1}{\prod_{d \mid n, d \neq n} \Phi_{d}(x)} .
$$

Therefore by the strong induction hypothesis, $\Phi_{n}(x)$ is the quotient of a long division of two monic integer polynomials; and so $\Phi_{n}(x) \in \mathbb{Z}[x]$.

Theorem 3. $\Phi_{n}(x)$ is irreducible in $\mathbb{Q}[x]$.
Proof. We assume to the contrary that $\Phi_{n}(x)$ is reducible in $\mathbb{Q}[x]$. Since $\Phi_{n}(x)$ is monic integer polynomial, we deduce that there are integer polynomials $f(x), g(x) \in$ $\mathbb{Z}[x]$ such that $\operatorname{deg} f, \operatorname{deg} g>0$ and $\Phi_{n}(x)=f(x) g(x)$. Since ζ_{n} is a zero of $\Phi_{n}(x)$, it should be a zero of $f(x)$ or $g(x)$. W.L.O.G. we can and will assume that $f\left(\zeta_{n}\right)=0$.

Claim. Suppose p is prime and $p \nmid n$. Then if $f(\zeta)=0$, then $f\left(\zeta^{p}\right)=0$.
Proof of Claim. Suppose to the contrary that $f\left(\zeta^{p}\right) \neq 0$. Since ζ is a zero of $f(x)$, it is a zero of $\Phi_{n}(x)$; hence $o(\zeta)=n$. As $p \nmid n, o\left(\zeta^{p}\right)=n$; and so $\Phi_{n}\left(\zeta^{p}\right)=0$; and so $g\left(\zeta^{p}\right)=0$. Hence

$$
m_{\zeta, \mathbb{Q}}(x) \mid f(x), \text { and } m_{\zeta, \mathbb{Q}}(x) \mid g\left(x^{p}\right) .
$$

Since $f(x)$ and $g\left(x^{p}\right)$ are monic integer polynomials, using Euclid's algorithm we can deduce that $h(x):=\operatorname{gcd}\left(f(x), g\left(x^{p}\right)\right)$ is a monic integer polynomial. Since $m_{\zeta, \mathbb{Q}}(x) \mid h(x)$, we have that $\operatorname{deg} h>0$. Thus there are polynomials $r, s \in \mathbb{Z}[x]$ such that

$$
f(x)=h(x) r(x), \text { and } g\left(x^{p}\right)=h(x) s(x) .
$$

Let's view both sides modulo p. So we get

$$
\bar{f}(x)=\bar{h}(x) \bar{r}(x), \text { and } \bar{g}(x)^{p}=\bar{h}(x) \bar{s}(x) .
$$

This implies that $\operatorname{gcd}(\bar{f}, \bar{g}) \neq 1$; and so $\bar{f}(x) \bar{g}(x)$ has multiple zeros in $\overline{\mathbb{F}}_{p}$. So $\Phi_{n}(x)(\bmod p)$ should have multiple zeros in $\overline{\mathbb{F}}_{p}$. But $\Phi_{n}(x)$ divides $x^{n}-1$ and $x^{n}-1$ does not have multiple zeros in $\overline{\mathbb{F}}_{p}$ as $\operatorname{gcd}\left(x^{n}-1, n x^{n-1}\right)=1$ (we have this as $p \nmid n)$, which gives us a contradiction.

Claim. $f\left(\zeta_{n}^{a}\right)=0$ if $\operatorname{gcd}(a, n)=1$.
Proof of Claim. One can easily deduce this by induction on the number of prime factors of a and using the previous Claim.

The above claim implies that $\operatorname{deg} f=\phi(n)=\operatorname{deg} \Phi_{n}$; and so $\operatorname{deg} g=0$, which is a contradiction.

Overall we get
Theorem 4. $\mathbb{Q}\left[\zeta_{n}\right] / \mathbb{Q}$ is a Galois extension, and

$$
\theta: \operatorname{Gal}\left(\mathbb{Q}\left[\zeta_{n}\right] / \mathbb{Q}\right) \rightarrow(\mathbb{Z} / n \mathbb{Z})^{\times}, \theta(\sigma):=a_{\sigma}+n \mathbb{Z}
$$

where $\sigma\left(\zeta_{n}\right)=\zeta_{n}^{a_{\sigma}}$ is a group isomorphism.
Proof. We have already proved that θ is an injective group homomorphism. By the previous Theorem we have $m_{\zeta_{n}, \mathbb{Q}}(x)=\Phi_{n}(x)$; and so

$$
\left|\operatorname{Gal}\left(\mathbb{Q}\left[\zeta_{n}\right] / \mathbb{Q}\right)\right|=\left[\mathbb{Q}\left[\zeta_{n}\right]: \mathbb{Q}\right]=\operatorname{deg} m_{\zeta_{n}, \mathbb{Q}}(x)=\operatorname{deg} \Phi_{n}(x)=\phi(n)=\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|
$$

This implies that θ is onto; and claim follows.

Solvability by Radicals

Long ago we mentioned that a lot of algebra had been developed to find zeros of polynomials. For a given polynomial $f(x) \in F[x]$, people tried to find its zeros using,,$+- \times, /$, and $\sqrt[n]{.}$. In modern language we say $f(x)$ is solvable by radicals over F if there is a chain of fields

$$
F=: F_{0} \subseteq F_{1} \subseteq \cdots \subseteq F_{n}
$$

such that $F_{k+1}=F_{k}\left[\sqrt[m_{k}]{a_{k}}\right]$ for some $a_{k} \in F_{k}$ and F_{n} has a zero of $f(x)$. Suppose the characteristic of F is zero and F^{\prime} is the normal closure of F_{n} over F. Then by a result that you have proved in your HW assignment we have that $\operatorname{Gal}\left(F^{\prime} / F\right)$ is solvable. This is proved by Galois; he proved the converse of this statement as well and these were his main motivations to work on field theory.

Theorem 5. Suppose $\operatorname{char}(F)=0, f(x) \in F[x]$ is irreducible, and E is a splitting field of $f(x)$ over F; then $f(x)$ is solvable by radicals over F if and only if $\operatorname{Gal}(E / F)$ is solvable.

For the remaining part of this lecture we focus on proving the "if" part of this Theorem. The following is an important result that has many applications.

Proposition 6 (Independence of characters). Suppose G is a group, F is a field, and $\chi_{1}, \ldots, \chi_{n}: G \rightarrow F^{\times}$are distinct group homomorphisms. Then χ_{i} 's are F-linearly independent; that means $\sum_{i=1}^{n} c_{i} \chi_{i}=0$ for some $c_{i} \in F$ implies that $c_{i}=0$ for any i.
(A group homomorphism $\chi: G \rightarrow F^{\times}$is called a character of G.)
Proof of Proposition 6. Suppose χ_{i} 's are linearly dependent and take a non-trivial linear relation with smallest number of non-zero coefficients. After relabelling, if necessary, we can and will assume that

$$
\begin{equation*}
c_{1} \chi_{1}+\cdots+c_{m} \chi_{m}=0 \tag{1}
\end{equation*}
$$

and $c_{i} \neq 0$ for any i. Since $\chi_{1} \neq \chi_{2}$ (notice that m cannot be 1), there is $g_{0} \in G$ such that $\chi_{1}\left(g_{0}\right) \neq \chi_{2}\left(g_{0}\right)$. By (1), for any $g \in G$, we have

$$
\left\{\begin{array}{l}
c_{1} \chi_{1}(g)+\cdots+c_{m} \chi_{m}(g)=0 \\
c_{1} \underbrace{\chi_{1}\left(g_{0} g\right)}_{\chi_{1}\left(g_{0}\right) \chi_{1}(g)}+\cdots+c_{m} \underbrace{\chi_{m}\left(g_{0} g\right)}_{\chi_{m}\left(g_{0}\right) \chi_{m}(g)}=0
\end{array} \quad \times \chi_{1}\left(g_{0}\right)\right.
$$

which implies

$$
c_{1}\left(\chi_{1}\left(g_{0}\right) \chi_{1}(g)-\chi_{1}\left(g_{0}\right) \chi_{1}(g)\right)+\cdots+c_{m}\left(\chi_{1}\left(g_{0}\right) \chi_{m}(g)-\chi_{m}\left(g_{0}\right) \chi_{m}(g)\right)=0 .
$$

Therefore

$$
c_{2}\left(\chi_{1}\left(g_{0}\right)-\chi_{2}\left(g_{0}\right)\right) \chi_{2}+\cdots+c_{m}\left(\chi_{1}\left(g_{0}\right)-\chi_{m}\left(g_{0}\right)\right) \chi_{m}=0
$$

which means we have found a non-trivial linear relation with smaller number of non-zero coefficients; and this is a contradiction.

Theorem 7 (Hilbert's Theorem 90). Suppose E / F is a finite Galois extension and $\operatorname{Gal}(E / F)=\langle\sigma\rangle$. Let $N_{E / F}(\alpha):=\prod_{\tau \in \operatorname{Gal}(E / F)} \tau(\alpha)$. Then

$$
N_{E / F}(\alpha)=1 \Leftrightarrow \exists \beta \in E, \alpha=\frac{\sigma(\beta)}{\beta}
$$

Proof. (\Leftarrow) is true for any finite Galois extension:

$$
N_{E / F}(\alpha)=\prod_{\tau \in \operatorname{Gal}(E / F)} \tau\left(\frac{\sigma(\beta)}{\beta}\right)=\frac{\prod_{\tau \in \operatorname{Gal}(E / F)}(\tau \circ \sigma)(\beta)}{\prod_{\tau \in \operatorname{Gal}(E / F)} \tau(\beta)}=1
$$

(\Rightarrow) Let $T_{\alpha}: E \rightarrow E, T_{\alpha}(a):=\alpha \sigma(a)$. Since $\sigma \in \operatorname{Gal}(E / F), T_{\alpha}$ is an F-linear map. We want to find the minimal polynomial of T_{α}; so we start with computing T_{α}^{k}. Notice that

$$
T_{\alpha}^{2}(a)=T_{\alpha}\left(T_{\alpha}(a)\right)=T_{\alpha}(\alpha \sigma(a))=\alpha \sigma(\alpha \sigma(a))=(\alpha \sigma(\alpha)) \sigma^{2}(a) .
$$

Following the same idea, we can prove by induction on k that

$$
\begin{equation*}
T_{\alpha}^{k}(a)=\underbrace{\left(\alpha \sigma(\alpha) \cdots \sigma^{k-1}(\alpha)\right)}_{\alpha_{k}} \sigma^{k}(a) . \tag{2}
\end{equation*}
$$

In particular, we have $T_{\alpha}^{n}(a)=N_{E / F}(\alpha) a$ where $n=[E: F]$. Hence T_{α} satisfies $x^{n}-N_{E / F}(\alpha)$. Notice that, for any $\tau \in \operatorname{Gal}(E / F)$,

$$
\tau\left(N_{E / F}(\alpha)\right)=\prod_{\sigma \in \operatorname{Gal}(E / F)}(\tau \circ \sigma)(\alpha)=\prod_{\sigma \in \operatorname{Gal}(E / F)} \sigma(\alpha)=N_{E / F}(\alpha) ;
$$

and so $N_{E / F}(\alpha) \in \operatorname{Fix}(\operatorname{Gal}(E / F))=F$. Therefore T_{α} satisfies $x^{n}-N_{E / F}(\alpha) \in$ $F[x]$.

Claim. The minimal polynomial of T_{α} is $x^{n}-N_{E / F}(\alpha)$ if $\alpha \neq 0$.
Proof of Claim. Since T_{α} satisfies this polynomial, it is enough to show that it does not satisfy a smaller degree polynomial in $F[x]$; and this is equivalent to saying that $I, T_{\alpha}, \ldots, T_{\alpha}^{n-1}$ are F-linearly independent. Notice by (2) $T_{\alpha}^{k}(a)=$ $\alpha_{k} \sigma^{k}$. So if $\sum_{i=0}^{n-1} f_{i} T_{\alpha}^{i}=0$, then $\sum_{i=0}^{n-1} \underbrace{\left(f_{i} \alpha_{i}\right)}_{\in E} \sigma^{i}=0$. Since $I, \sigma, \ldots, \sigma^{n-1}$: $E^{\times} \rightarrow E^{\times}$are distinct group homomorphisms, by the previous lemma they are E-linearly independent. Hence $f_{i} \alpha_{i}=0$, which implies $f_{i}=0$ as $\alpha_{i} \neq 0$ (since $\alpha \neq 0$, we have $\alpha_{i} \neq 0$); and claim follows.

If $N_{E / F}(\alpha)=1$, then the minimal polynomial of T_{α} is $x^{n}-1$; hence it has eigenvalue 1 . Therefore there is $\beta^{\prime} \in E$ such that $T_{\alpha}\left(\beta^{\prime}\right)=\beta^{\prime}$; this means

$$
\alpha \sigma\left(\beta^{\prime}\right)=\beta^{\prime}
$$

Thus for $\beta:=\beta^{\prime-1}$ we have $\alpha=\sigma(\beta) / \beta$.
The next lemma gives us the connection between Hilbert's theorem 90 and Galois's theorem.

Proposition 8. Suppose $\mu_{n}:=\left\{\zeta \in F \mid \zeta^{n}=1\right\}$ has n distinct elements, $\operatorname{Gal}(E / F) \simeq \mathbb{Z} / n \mathbb{Z}$. Then there is $a \in F$ such that $E=F[\sqrt[n]{a}]$.

Proof. As we have mentioned earlier μ_{n} is a cyclic group of order n. Suppose $\mu_{n}=\left\langle\zeta_{n}\right\rangle$. Then $N_{E / F}\left(\zeta_{n}\right)=\zeta_{n}^{n}=1$. Hence by Hilbert's Theorem 90, there is $\beta \in E$ such that $\zeta_{n}=\frac{\sigma(\beta)}{\beta}$; this means $\sigma(\beta)=\zeta_{n} \beta$. we will continue next time.

