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Solvability by radicals (continue)

Proposition 1. Suppose µn := {ζ ∈ F | ζn = 1} has n distinct elements,

Gal(E/F ) ≃ Z/nZ. Then there is a ∈ F such that E = F [ n
√
a].

Proof. As we have mentioned earlier µn is a cyclic group of order n. Suppose

µn = 〈ζn〉. Then NE/F (ζn) = ζnn = 1. Hence by Hilbert’s Theorem 90, there

is β ∈ E such that ζn = σ(β)
β

where σ is a generator of Gal(E/F ); this means

σ(β) = ζnβ. Then σ(βn) = (ζnβ)
n = βn; and so βn is fixed by Gal(E/F ),

which means a := βn ∈ F . Notice that a splitting field of xn − a is F [β] as

xn − a =
n−1

i=0 (x − ζ inβ) and ζn ∈ F . So F [β]/F is a Galois extension. As

σ(β) = ζnβ, we have σi(β) = ζ iβ. Hence o(σ|F [β]) = n, which implies that

[F [β] : F ] ≥ n. Therefore E = F [β] = F [ n
√
a]; and claim follows. □

Theorem 2. Suppose F is a characteristic zero field, f(x) is irreducible in F [x],

and E is a splitting field of f(x) over F . Suppose Gal(E/F ) is solvable. Then

f(x) is solvable by radicals over F .

Proof. Suppose n := |Gal(E/F )|. Let L be a splitting field of f(x)(xn − 1) over

F . Then L/F is a Galois extension, E can be viewed as a subfield of L, and

L = F [zeros of f, ζn] = E[ζn] where xn − 1 =
n−1

i=0 (x− ζ in). Then

1 → Gal(L/E)  
can be embedded into(Z/nZ)×

→ Gal(L/F ) → Gal(E/F )  
solvable

→ 1

is a S.E.S.; and so Gal(L/F ) is solvable. Hence Gal(L/F [ζn]) is solvable. There-

fore there is a chain of subgroups {Ni}i such that

1 = Nk ⊴Nk−1 ⊴ · · ·⊴N1 = Gal(L/F [ζn]),

and Ni−1/Ni ≃ Z/miZ. Notice that

[L : F [ζn]] =
[L : F ]

[F [ζn] : F ]
=

[E[ζn] : E]

[F [ζn] : F ]
[E : F ]

1
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and Gal(E[ζn]/E) can be embedded into Gal(F [ζn]/F ). Hence

mi|[L : F [ζn]], and [L : F [ζn]]|[E : F ] = n.

Let Li := Fix(Ni). Then, for any i, we have that Li/Li−1 is a Galois extension and

Gal(Li/Li−1) ≃ Z/miZ, ζn ∈ Li−1, and mi|n. Thus by the previous proposition,

there is ai−1 ∈ Li−1 such that Li = Li−1[ mi
√
ai−1]; and claim follows. □

Commutative algebra

As it has been pointed out a lot of algebra has been developed to understand

zeros of polynomials. We have seen how Galois theory was developed to un-

derstand zeros of single variable polynomials. Next we will try to understand

either zeros of single variable polynomials in Z (instead of Q) (going towards al-

gebraic number theory) or zeros of multivariable polynomials in Q (going towards

algebraic geometry).

Long ago we have seen that Nil(A) =


p∈Spec(A) p, Nil(A) is called the nil-

radical of A. Let J(A) :=


m∈Max(A) m; J(A) is called the Jacobson radical of

A. Jacobson has defined this concept for non-commutative rings; he defined left

and right Jacobson radicals as the intersection of maximal left and right ideals

respectively; and then showed they are equal. Therefore it is an ideal. It is an

important concept as simple A-modules are the same as simple A/J(A)-modules.

In this course we work only with commutative rings. Here is a basic property of

J(A).

Lemma 3. x ∈ J(A) ⇔ ∀y ∈ A, 1− xy ∈ A×.

Proof. (⇒) Suppose to the contrary that there is y ∈ A such that 1− xy ∕∈ A×;

then the ideal generated by 1−xy is a proper ideal of A. Hence there is a maximal

ideal m ∈ Max(A) such that 1 − xy ∈ m. Since x ∈ J(A), x ∈ m. Therefore

1 ∈ m, which is a contradiction.

(⇐) Suppose for some m ∈ Max(A) we have that x ∕∈ m. Then x+m is a non-

zero element of the field A/m. Thus there is y ∈ A such that xy ≡ 1 (mod m),

which means 1− xy ∈ m. Thus 1− xy ∕∈ A× which is a contradiction. □

Proposition 4. (1) Nil(A[x]) = (Nil(A))[x].

(2) (A[x])× = {
∞

i=0 aix
i ∈ A[x]| a0 ∈ A×, ai ∈ Nil(A) if i ≥ 1}.

(3) J(A) = (Nil(A))[x].
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Proof. (1) Since Nil(A[x]) is an ideal of A[x] and Nil(A) is a subset of Nil(A[x]),

we have that Nil(A[x]) ⊇ (Nil(A))[x].

For any p ∈ Spec(A), we have that A[x]/p[x] ≃ (A/p)[x] is an integral domain.

Hence p[x] is in Spec(A[x]) if p ∈ Spec(A). Therefore

Nil(A[x]) ⊆


p∈Spec(A)

p[x] = (Nil(A))[x];

and claim follows.

(2) In any ring B, if u ∈ B× and n ∈ Nil(B), then u + n ∈ B×: u + n =

u(1 + u−1n) and (1 + y)(1 − y + y2 − · · · + (−1)kyk) = 1 if yk+1 = 0. So the

RHS consists of units. Suppose f(x) =
∞

i=0 aix
i ∈ (A[x])×; that means for

some g(x) =
∞

i=0 bix
i ∈ A[x], f(x)g(x) = 1. Thus 1 = f(0)g(0) = a0b0; and so

a0 ∈ A×. For any p ∈ Spec(A), we have f(x)g(x) ≡ 1 (mod p). Since A/p is

an integral domain, (A/p)[x]× = (A/p)×. This implies that ai ∈ p for i ≥ 1 and

p ∈ Spec(A). Hence ai ∈


p∈Spec(A) p = Nil(A) for i ≥ 1; and claim follows.

(3) Clearly J(A) ⊇ Nil(A[x]) = (Nil(A))[x]. Suppose f(x) ∈ J(A); then

1 − xf(x) ∈ A[x]×. Thus all the coefficients of f(x) are in Nil(A), which means

f(x) ∈ (Nil(A))[x]. □

Let’s recall that we say an ideal a divides b and write a|b if b ⊆ a. We denote

the set of prime divisors of an ideal a by V (a).

Proposition 5 (Basics of divisibility for ideals). (1) a|b ⇒ V (a) ⊆ V (b).

(2) gcd({ai}i∈I) =


i∈I ai and V (


i∈I ai) =


i∈I V (ai).

(3) lcm({ai}i∈I) =


i∈I ai and V (
n

i=1 ai) =
n

i=1 V (ai); for an infinite family

of ideals equality does not necessarily hold.

(4) V (A) = ∅ and V (0) = Spec(A).

Proof. (1) One can see that a|b and b|c imply that a|c. Hence if a|b, then any

prime divisor of a is a prime divisor of b.

(2) b|ai for any i implies that ai ⊆ b for any i; and so


i∈I ai ⊆ b which

implies that b|


i∈I ai. Clearly aj ⊆


i∈I ai which means


i∈I ai|aj for any j.

As gcd({ai}i∈I |aj, V (


i∈I ai) ⊆ V (aj) for any j. If p ∈


i V (ai), then ai ⊆ p for

any i; this implies that


i∈I ai ⊆ p.

(3) ∀i ∈ I, ai|b ⇔ ∀i ∈ I, b ⊆ ai ⇔ b ⊆


i ai ⇔ (


i ai)|b. Since ai|


j aj,

V (ai) ⊆ V (


j aj); and so


i∈I V (ai) ⊆ V (


i∈I ai). Suppose to the contrary that
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p ∈ V (
n

i=1 ai) \
n

i=1 V (ai); then
n

i=1 ai ⊆ p and for any i there is ai ∈ ai \ p.
Therefore

n
i=1 ai ∕∈ p and

n
i=1 ai ∈

n
i=1 ai, which contradicts

n
i=1 ai ⊆ p.

Let P be the set of prime numbers in Z. Then


p∈P pZ = 0; and so 0 is in

V (


p∈P pZ); but 0 is not in


p∈P V (pZ).
(4) is clear. □

Definition 6 (Zariski topology). Let {V (a)}a⊴A be the set of closed subsets of

Spec(A). The above proposition shows that this collection of closed sets give us a

well-defined topology on Spec(A). This is called the Zariski topology of Spec(A).


