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Zariski topology

In the previous lecture we were proving the following.

Proposition 1 (Basics of divisibility for ideals). (1) a|b ⇒ V (a) ⊆ V (b).

(2) gcd({ai}i∈I) =


i∈I ai and V (


i∈I ai) =


i∈I V (ai).

(3) lcm({ai}i∈I) =


i∈I ai and V (
n

i=1 ai) =
n

i=1 V (ai); for an infinite family

of ideals equality does not necessarily hold.

(4) V (A) = ∅ and V (0) = Spec(A).

The rest of proof. (3) ∀i ∈ I, ai|b ⇔ ∀i ∈ I, b ⊆ ai ⇔ b ⊆


i ai ⇔ (


i ai)|b.
Since ai|


j aj, V (ai) ⊆ V (


j aj); and so


i∈I V (ai) ⊆ V (


i∈I ai). Suppose to

the contrary that p ∈ V (
n

i=1 ai)\
n

i=1 V (ai); then
n

i=1 ai ⊆ p and for any i there

is ai ∈ ai \ p. Therefore
n

i=1 ai ∕∈ p and
n

i=1 ai ∈
n

i=1 ai, which contradicts
n

i=1 ai ⊆ p.

Let P be the set of prime numbers in Z. Then


p∈P pZ = 0; and so 0 is in

V (


p∈P pZ); but 0 is not in


p∈P V (pZ).
(4) is clear. □

Definition 2 (Zariski topology). Let {V (a)}a⊴A be the set of closed subsets of

Spec(A). The above proposition shows that this collection of closed sets give us a

well-defined topology on Spec(A). This is called the Zariski topology of Spec(A).

Before we continue studying the connection between Zariski topology and al-

gebraic properties of the ambient ring, let us prove a technical lemma that will

be needed later. This lemma shows us how union of ideals is far from being an

ideal. You will see a strengthening of this result in your HW assignment.

Proposition 3. Suppose p1, . . . , pn ∈ Spec(A), a ⊴ A, and a ⊆
n

i=1 pi. Then

a ⊆ pi for some i.
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Proof. We proceed by induction on n. So W.L.O.G. we can assume that a ∕⊆


i ∕=i0
pi for any i0 ∈ [1..n]. Let ai0 ∈ a\


i ∕=i0

pi for any i0 ∈ [1..n]. Since a ⊆


i pi,

we have that ai ∈ pi. Let a :=
n−1

i=1 ai + an. Notice that a
′ :=

n−1
i=1 ai ∈

n−1
i=1 pi

as ai ∈ pi and a′ =
n−1

i=1 ai ∕∈ pn as ai ∕∈ pn and pn is a prime ideal. On the other

hand, a := a′ + an ∈ a ⊆
n

i=1 pi. So either a ∈ pn or a ∈ pi for some i ≤ n− 1.




a ∈ pn ⇒ a′ + an ∈ pn

an∈pn
===⇒ a′ ∈ pn,which is a contradiction.

a ∈ pi ⇒ a′ + an ∈ pi
a′∈pi
===⇒ an ∈ pi,which is a contradiction.

□

Now we go back to understanding Zariski-topology.

Lemma 4. (1) Any non-empty closed set of Spec(A) intersects Max(A).

(2) {m ∈ Spec(A)| m is a closed point in Spec(A)} = Max(A).

(3) In an integral domain D, 0 is dense in Spec(A) (that is why it is called

the generic point of Spec(A)).

Proof. (1) If V (a) ∕= ∅, then a is a proper ideal. Hence there is a maximal ideal

m that contains a as a subset. So m ∈ V (a).

(2) If m is a closed point in Spec(A), then there is an ideal a such that V (a) =

{m}. Now by part (1), m ∈ Max(A).

If m ∈ Max(A), then clearly V (m) = {m}.
(3) is clear. □

Contraction and extension of ideals

Lemma 5. Suppose f : A → B is a ring homomorphism. For b ⊴ B, let bc :=

f−1(b), and for a ⊴ A, let ae := 〈f(a)〉. Then bc is an ideal of A and ae is an

ideal of A.

Proof. It is clear. □

In the above setting bc is called the contraction of b and ae is called the exten-

sion of a. For any ring A, let ideal(A) be the set of its ideals. So b → bc gives us a

function ideal(B) → ideal(A) and a → ae gives us a function ideal(A) → ideal(B).

Lemma 6. In the above setting, we have:

(1) bce ⊆ b and aec ⊇ a.

(2) bcec = bc and aece = ae.
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(3) The contraction and extension maps induce bijections between the set of

contracted ideals and extended ideals.

Proof. (1) Since f(f−1(b)) ⊆ b, bce ⊆ b. Since f(a) ⊆ ae,

a ⊆ f−1(f(a)) ⊆ f−1(ae) = aec.

(2) bcec = (bc)ec ⊇ bc and bcec = (bce)c ⊆ bc; and so bcec = bc. aece = (aec)e ⊇ ae

and aece = (ae)ce ⊆ ae; and so aece = ae. (3) is clear because of (2). □

Lemma 7. In the above setting, A/bc ↩→ B/b for any b ∈ ideal(B).

Proof. Let f : A → B/b, f(a) := f(a) + b. Then ker f = bc; and so by the first

isomorphism theorem claim follows. □

Proposition 8. Suppose f : A → B is a ring homomorphism. Then

f ∗ : Spec(B) → Spec(A), f ∗(q) := qc

is a continuous map.

Proof. By the previous lemma, A/f ∗(q) can be embedded into B/q. Since q is

a prime ideal, B/q is an integral domain. Hence A/f ∗(q) is an integral domain

(notice that f(1A) = 1B and so f ∗(q) is a proper ideal). Therefore f ∗(q) is a

prime ideal. We also have

f ∗(q) ∈ V (a) ⇔ a ⊆ qc ⇔ ae ⊆ q ⇔ q ∈ V (ae),

which means (f ∗)−1(V (a)) = V (ae); and so preimage of a closed set under f ∗ is

closed. Therefore f ∗ is continuous. □

Lemma 9. Let π : A → A/a, π(a) := a+ a. Then π∗ induces a homeomorphism

between Spec(A/a) and V (a).

Proof. Suppose p ∈ Spec(A/a); then a = ker π ⊆ π∗(p). Hence π∗(p) ∈ V (a).

If p ∈ V (a), then p/a ∈ ideal(A/a) and (A/a)/(p/a) ≃ A/p is an integral

domain. Hence p := p/a ∈ Spec(A/a); and p = π∗(p).

If p := π∗(p1) = π∗(p2), then pi = p/a for any i; and so π∗ is injective.

For any b ∈ ideal(A/a), b = b
c
/a. Hence

p ∈ V (b) ⇔ b ⊆ p ⇔ b
c
/a ⊆ pc/a ⇔ b

c ⊆ pc ⇔ f ∗(p) ∈ V (b
c
),

which implies f ∗ is a closed map; and claim follows. □
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Lemma 10. Let f : A → S−1A, f(a) := a/1. Then for any a ∈ ideal(A), ae =

S−1a and for any a ∈ ideal(S−1A), a = ace.

Proof. For any s ∈ S and a ∈ a, a/s = (1/s)(a/1) ∈ ae; and so S−1a ⊆ ae. We

have seen that S−1a is an ideal of S−1A. Hence ae = S−1A.

Let a := ac. Then a ⊇ ae. On the other hand,

a/s ∈ a ⇒ (s/1)(a/s) ∈ a ⇒ a/1 ∈ a ⇒ a ∈ ac = a ⇒ a/s ∈ S−1a = ae;

and claim follows. □

Corollary 11. Let f : A → S−1A, f(a) := a/1. Then contraction is an injec-

tive map ideal(S−1A) → ideal(A) and extension is a surjective map ideal(A) →
ideal(S−1A)

Lemma 12. Let f : A → S−1A, f(a) := a/1. Then f ∗ induces a bijection

between Spec(S−1A) and {p ∈ Spec(A)| p ∩ S = ∅}. Moreover if p ∈ Spec(A)

and p ∩ S = ∅, then pec = p.

Proof. Step 1. By the above Corollary, contraction is injective; and so f ∗ is

injective.

Step 2. If f ∗(p) = p, then by the above Lemma p = S−1p; in particular, S−1p

is a proper ideal. This implies S ∩ p = ∅.

Step 3. Suppose p ∈ Spec(A) and p ∩ S = ∅. Then A/p is an integral domain

and S := π(S) does not contain 0, where π : A → A/p, π(a) := a + p. Hence

S
−1
(A/p) can be embedded into the field Q(A/p) of fractions of A/p. Let θ be

the composite A → A/p ↩→ Q(A/p) homomorphism.

We will continue next time. □

A question asked during lecture: Is it true that


i∈I V (ai) = V (


i∈I ai)?

Let A := Z and ai := 2iZ. Then V (ai) = {2Z} for any i and


i ai = 0; and

so V (


i ai) = Spec(Z). Hence


i V (ai) = {2Z} is closed and is not equal to

V (


i ai).


