MATH200C, LECTURE 6

GOLSEFIDY

ZaRISki TOPOLOGY

In the previous lecture we were proving the following.
Proposition 1 (Basics of divisibility for ideals). (1) $\mathfrak{a} \mid \mathfrak{b} \Rightarrow V(\mathfrak{a}) \subseteq V(\mathfrak{b})$.
(2) $\operatorname{gcd}\left(\left\{\mathfrak{a}_{i}\right\}_{i \in I}\right)=\sum_{i \in I} \mathfrak{a}_{i}$ and $V\left(\sum_{i \in I} \mathfrak{a}_{i}\right)=\bigcap_{i \in I} V\left(\mathfrak{a}_{i}\right)$.
(3) $\operatorname{lcm}\left(\left\{\mathfrak{a}_{i}\right\}_{i \in I}\right)=\bigcap_{i \in I} \mathfrak{a}_{i}$ and $V\left(\bigcap_{i=1}^{n} \mathfrak{a}_{i}\right)=\bigcup_{i=1}^{n} V\left(\mathfrak{a}_{i}\right)$; for an infinite family of ideals equality does not necessarily hold.
(4) $V(A)=\varnothing$ and $V(0)=\operatorname{Spec}(A)$.

The rest of proof. (3) $\forall i \in I, \mathfrak{a}_{i}\left|\mathfrak{b} \Leftrightarrow \forall i \in I, \mathfrak{b} \subseteq \mathfrak{a}_{i} \Leftrightarrow \mathfrak{b} \subseteq \bigcap_{i} \mathfrak{a}_{i} \Leftrightarrow\left(\bigcap_{i} \mathfrak{a}_{i}\right)\right| \mathfrak{b}$. Since $\mathfrak{a}_{i} \mid \bigcap_{j} \mathfrak{a}_{j}, V\left(\mathfrak{a}_{i}\right) \subseteq V\left(\bigcap_{j} \mathfrak{a}_{j}\right)$; and so $\bigcup_{i \in I} V\left(\mathfrak{a}_{i}\right) \subseteq V\left(\bigcap_{i \in I} \mathfrak{a}_{i}\right)$. Suppose to the contrary that $\mathfrak{p} \in V\left(\bigcap_{i=1}^{n} \mathfrak{a}_{i}\right) \backslash \bigcap_{i=1}^{n} V\left(\mathfrak{a}_{i}\right)$; then $\bigcap_{i=1}^{n} \mathfrak{a}_{i} \subseteq \mathfrak{p}$ and for any i there is $a_{i} \in \mathfrak{a}_{i} \backslash \mathfrak{p}$. Therefore $\prod_{i=1}^{n} a_{i} \notin \mathfrak{p}$ and $\prod_{i=1}^{n} a_{i} \in \bigcap_{i=1}^{n} \mathfrak{a}_{i}$, which contradicts $\bigcap_{i=1}^{n} \mathfrak{a}_{i} \subseteq \mathfrak{p}$.

Let \mathscr{P} be the set of prime numbers in \mathbb{Z}. Then $\bigcap_{p \in \mathscr{P}} p \mathbb{Z}=0$; and so 0 is in $V\left(\bigcap_{p \in \mathscr{P}} p \mathbb{Z}\right)$; but 0 is not in $\bigcup_{p \in \mathscr{P}} V(p \mathbb{Z})$.
(4) is clear.

Definition 2 (Zariski topology). Let $\{V(\mathfrak{a})\}_{\mathfrak{a} \unlhd A}$ be the set of closed subsets of $\operatorname{Spec}(A)$. The above proposition shows that this collection of closed sets give us a well-defined topology on $\operatorname{Spec}(A)$. This is called the Zariski topology of $\operatorname{Spec}(A)$.

Before we continue studying the connection between Zariski topology and algebraic properties of the ambient ring, let us prove a technical lemma that will be needed later. This lemma shows us how union of ideals is far from being an ideal. You will see a strengthening of this result in your HW assignment.

Proposition 3. Suppose $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n} \in \operatorname{Spec}(A), \mathfrak{a} \unlhd A$, and $\mathfrak{a} \subseteq \bigcup_{i=1}^{n} \mathfrak{p}_{i}$. Then $\mathfrak{a} \subseteq \mathfrak{p}_{i}$ for some i.

Proof. We proceed by induction on n. So W.L.O.G. we can assume that $\mathfrak{a} \nsubseteq$ $\bigcup_{i \neq i_{0}} \mathfrak{p}_{i}$ for any $i_{0} \in[1 . . n]$. Let $a_{i_{0}} \in \mathfrak{a} \backslash \bigcup_{i \neq i_{0}} \mathfrak{p}_{i}$ for any $i_{0} \in[1 . . n]$. Since $\mathfrak{a} \subseteq \bigcup_{i} \mathfrak{p}_{i}$, we have that $a_{i} \in \mathfrak{p}_{i}$. Let $a:=\prod_{i=1}^{n-1} a_{i}+a_{n}$. Notice that $a^{\prime}:=\prod_{i=1}^{n-1} a_{i} \in \bigcap_{i=1}^{n-1} \mathfrak{p}_{i}$ as $a_{i} \in \mathfrak{p}_{i}$ and $a^{\prime}=\prod_{i=1}^{n-1} a_{i} \notin \mathfrak{p}_{n}$ as $a_{i} \notin \mathfrak{p}_{n}$ and \mathfrak{p}_{n} is a prime ideal. On the other hand, $a:=a^{\prime}+a_{n} \in \mathfrak{a} \subseteq \bigcup_{i=1}^{n} \mathfrak{p}_{i}$. So either $a \in \mathfrak{p}_{n}$ or $a \in \mathfrak{p}_{i}$ for some $i \leq n-1$.

$$
\left\{\begin{array}{l}
a \in \mathfrak{p}_{n} \Rightarrow a^{\prime}+a_{n} \in \mathfrak{p}_{n} \xrightarrow{a_{n} \in \mathfrak{p}_{n}} a^{\prime} \in \mathfrak{p}_{n}, \text { which is a contradiction. } \\
a \in \mathfrak{p}_{i} \Rightarrow a^{\prime}+a_{n} \in \mathfrak{p}_{i} \xrightarrow{a^{\prime} \in \mathfrak{p}_{i}} a_{n} \in \mathfrak{p}_{i}, \text { which is a contradiction. }
\end{array}\right.
$$

Now we go back to understanding Zariski-topology.
Lemma 4. (1) Any non-empty closed set of $\operatorname{Spec}(A)$ intersects $\operatorname{Max}(A)$.
(2) $\{\mathfrak{m} \in \operatorname{Spec}(A) \mid \mathfrak{m}$ is a closed point in $\operatorname{Spec}(A)\}=\operatorname{Max}(A)$.
(3) In an integral domain $D, 0$ is dense in $\operatorname{Spec}(A)$ (that is why it is called the generic point of $\operatorname{Spec}(A))$.

Proof. (1) If $V(\mathfrak{a}) \neq \varnothing$, then \mathfrak{a} is a proper ideal. Hence there is a maximal ideal \mathfrak{m} that contains \mathfrak{a} as a subset. So $\mathfrak{m} \in V(\mathfrak{a})$.
(2) If \mathfrak{m} is a closed point in $\operatorname{Spec}(A)$, then there is an ideal \mathfrak{a} such that $V(\mathfrak{a})=$ $\{\mathfrak{m}\}$. Now by part (1), $\mathfrak{m} \in \operatorname{Max}(A)$.

If $\mathfrak{m} \in \operatorname{Max}(A)$, then clearly $V(\mathfrak{m})=\{\mathfrak{m}\}$.
(3) is clear.

Contraction and extension of ideals

Lemma 5. Suppose $f: A \rightarrow B$ is a ring homomorphism. For $\mathfrak{b} \unlhd B$, let $\mathfrak{b}^{c}:=$ $f^{-1}(\mathfrak{b})$, and for $\mathfrak{a} \unlhd A$, let $\mathfrak{a}^{e}:=\langle f(\mathfrak{a})\rangle$. Then \mathfrak{b}^{c} is an ideal of A and \mathfrak{a}^{e} is an ideal of A.

Proof. It is clear.
In the above setting \mathfrak{b}^{c} is called the contraction of \mathfrak{b} and \mathfrak{a}^{e} is called the extension of \mathfrak{a}. For any ring A, let ideal(A) be the set of its ideals. So $\mathfrak{b} \mapsto \mathfrak{b}^{c}$ gives us a function ideal $(\mathrm{B}) \rightarrow \operatorname{ideal}(\mathrm{A})$ and $\mathfrak{a} \mapsto \mathfrak{a}^{e}$ gives us a function ideal(A) \rightarrow ideal(B).

Lemma 6. In the above setting, we have:
(1) $\mathfrak{b}^{c e} \subseteq \mathfrak{b}$ and $\mathfrak{a}^{e c} \supseteq \mathfrak{a}$.
(2) $\mathfrak{b}^{c e c}=\mathfrak{b}^{c}$ and $\mathfrak{a}^{e c e}=\mathfrak{a}^{e}$.
(3) The contraction and extension maps induce bijections between the set of contracted ideals and extended ideals.

Proof. (1) Since $f\left(f^{-1}(\mathfrak{b})\right) \subseteq \mathfrak{b}, \mathfrak{b}^{c e} \subseteq \mathfrak{b}$. Since $f(\mathfrak{a}) \subseteq \mathfrak{a}^{e}$,

$$
\mathfrak{a} \subseteq f^{-1}(f(\mathfrak{a})) \subseteq f^{-1}\left(\mathfrak{a}^{e}\right)=\mathfrak{a}^{e c} .
$$

(2) $\mathfrak{b}^{c e c}=\left(\mathfrak{b}^{c}\right)^{e c} \supseteq \mathfrak{b}^{c}$ and $\mathfrak{b}^{c e c}=\left(\mathfrak{b}^{c e}\right)^{c} \subseteq \mathfrak{b}^{c}$; and so $\mathfrak{b}^{c e c}=\mathfrak{b}^{c}$. $\mathfrak{a}^{e c e}=\left(\mathfrak{a}^{e c}\right)^{e} \supseteq \mathfrak{a}^{e}$ and $\mathfrak{a}^{e c e}=\left(\mathfrak{a}^{e}\right)^{c e} \subseteq \mathfrak{a}^{e}$; and so $\mathfrak{a}^{e c e}=\mathfrak{a}^{e}$. (3) is clear because of (2).

Lemma 7. In the above setting, $A / \mathfrak{b}^{c} \hookrightarrow B / \mathfrak{b}$ for any $\mathfrak{b} \in \operatorname{ideal(B).~}$
Proof. Let $\bar{f}: A \rightarrow B / \mathfrak{b}, \bar{f}(a):=f(a)+\mathfrak{b}$. Then $\operatorname{ker} \bar{f}=\mathfrak{b}^{c}$; and so by the first isomorphism theorem claim follows.

Proposition 8. Suppose $f: A \rightarrow B$ is a ring homomorphism. Then

$$
f^{*}: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A), f^{*}(\mathfrak{q}):=\mathfrak{q}^{c}
$$

is a continuous map.
Proof. By the previous lemma, $A / f^{*}(\mathfrak{q})$ can be embedded into B / \mathfrak{q}. Since \mathfrak{q} is a prime ideal, B / \mathfrak{q} is an integral domain. Hence $A / f^{*}(\mathfrak{q})$ is an integral domain (notice that $f\left(1_{A}\right)=1_{B}$ and so $f^{*}(\mathfrak{q})$ is a proper ideal). Therefore $f^{*}(\mathfrak{q})$ is a prime ideal. We also have

$$
f^{*}(\mathfrak{q}) \in V(\mathfrak{a}) \Leftrightarrow \mathfrak{a} \subseteq \mathfrak{q}^{c} \Leftrightarrow \mathfrak{a}^{e} \subseteq \mathfrak{q} \Leftrightarrow \mathfrak{q} \in V\left(\mathfrak{a}^{e}\right)
$$

which means $\left(f^{*}\right)^{-1}(V(\mathfrak{a}))=V\left(\mathfrak{a}^{e}\right)$; and so preimage of a closed set under f^{*} is closed. Therefore f^{*} is continuous.

Lemma 9. Let $\pi: A \rightarrow A / \mathfrak{a}, \pi(a):=a+\mathfrak{a}$. Then π^{*} induces a homeomorphism between $\operatorname{Spec}(A / \mathfrak{a})$ and $V(\mathfrak{a})$.

Proof. Suppose $\overline{\mathfrak{p}} \in \operatorname{Spec}(A / \mathfrak{a})$; then $\mathfrak{a}=\operatorname{ker} \pi \subseteq \pi^{*}(\overline{\mathfrak{p}})$. Hence $\pi^{*}(\overline{\mathfrak{p}}) \in V(\mathfrak{a})$.
If $\mathfrak{p} \in V(\mathfrak{a})$, then $\mathfrak{p} / \mathfrak{a} \in \operatorname{ideal}(\mathrm{A} / \mathfrak{a})$ and $(A / \mathfrak{a}) /(\mathfrak{p} / \mathfrak{a}) \simeq A / \mathfrak{p}$ is an integral domain. Hence $\overline{\mathfrak{p}}:=\mathfrak{p} / \mathfrak{a} \in \operatorname{Spec}(A / \mathfrak{a})$; and $\mathfrak{p}=\pi^{*}(\overline{\mathfrak{p}})$.

If $\mathfrak{p}:=\pi^{*}\left(\overline{\mathfrak{p}}_{1}\right)=\pi^{*}\left(\overline{\mathfrak{p}}_{2}\right)$, then $\overline{\mathfrak{p}}_{i}=\mathfrak{p} / \mathfrak{a}$ for any i; and so π^{*} is injective.
For any $\overline{\mathfrak{b}} \in \operatorname{ideal}(\mathrm{A} / \mathfrak{a}), \overline{\mathfrak{b}}=\overline{\mathfrak{b}}^{c} / \mathfrak{a}$. Hence

$$
\overline{\mathfrak{p}} \in V(\overline{\mathfrak{b}}) \Leftrightarrow \overline{\mathfrak{b}} \subseteq \overline{\mathfrak{p}} \Leftrightarrow \overline{\mathfrak{b}}^{c} / \mathfrak{a} \subseteq \overline{\mathfrak{p}}^{c} / \mathfrak{a} \Leftrightarrow \overline{\mathfrak{b}}^{c} \subseteq \overline{\mathfrak{p}}^{c} \Leftrightarrow f^{*}(\overline{\mathfrak{p}}) \in V\left(\overline{\mathfrak{b}}^{c}\right),
$$

which implies f^{*} is a closed map; and claim follows.

Lemma 10. Let $f: A \rightarrow S^{-1} A, f(a):=a / 1$. Then for any $\mathfrak{a} \in \operatorname{ideal}(\mathrm{A}), \mathfrak{a}^{\mathrm{e}}=$ $\mathrm{S}^{-1} \mathfrak{a}$ and for any $\tilde{\mathfrak{a}} \in \operatorname{ideal}\left(\mathrm{S}^{-1} \mathrm{~A}\right), \tilde{\mathfrak{a}}=\widetilde{\mathfrak{a}}^{\text {ce }}$.

Proof. For any $s \in S$ and $a \in \mathfrak{a}, a / s=(1 / s)(a / 1) \in \mathfrak{a}^{e}$; and so $S^{-1} \mathfrak{a} \subseteq \mathfrak{a}^{e}$. We have seen that $S^{-1} \mathfrak{a}$ is an ideal of $S^{-1} A$. Hence $\mathfrak{a}^{e}=S^{-1} A$.

Let $\mathfrak{a}:=\widetilde{\mathfrak{a}}^{c}$. Then $\widetilde{\mathfrak{a}} \supseteq \mathfrak{a}^{e}$. On the other hand,

$$
a / s \in \tilde{\mathfrak{a}} \Rightarrow(s / 1)(a / s) \in \widetilde{\mathfrak{a}} \Rightarrow a / 1 \in \widetilde{\mathfrak{a}} \Rightarrow a \in \widetilde{\mathfrak{a}}^{c}=\mathfrak{a} \Rightarrow a / s \in S^{-1} \mathfrak{a}=\mathfrak{a}^{e} ;
$$

and claim follows.
Corollary 11. Let $f: A \rightarrow S^{-1} A, f(a):=a / 1$. Then contraction is an injective map ideal $\left(\mathrm{S}^{-1} \mathrm{~A}\right) \rightarrow \operatorname{ideal}(\mathrm{A})$ and extension is a surjective map ideal $(\mathrm{A}) \rightarrow$ ideal($\mathrm{S}^{-1} \mathrm{~A}$)

Lemma 12. Let $f: A \rightarrow S^{-1} A, f(a):=a / 1$. Then f^{*} induces a bijection between $\operatorname{Spec}\left(S^{-1} A\right)$ and $\{\mathfrak{p} \in \operatorname{Spec}(A) \mid \mathfrak{p} \cap S=\varnothing\}$. Moreover if $\mathfrak{p} \in \operatorname{Spec}(A)$ and $\mathfrak{p} \cap S=\varnothing$, then $\mathfrak{p}^{e c}=\mathfrak{p}$.

Proof. Step 1. By the above Corollary, contraction is injective; and so f^{*} is injective.

Step 2. If $f^{*}(\widetilde{\mathfrak{p}})=\mathfrak{p}$, then by the above Lemma $\widetilde{\mathfrak{p}}=S^{-1} \mathfrak{p}$; in particular, $S^{-1} \mathfrak{p}$ is a proper ideal. This implies $S \cap \mathfrak{p}=\varnothing$.

Step 3. Suppose $\mathfrak{p} \in \operatorname{Spec}(A)$ and $\mathfrak{p} \cap S=\varnothing$. Then A / \mathfrak{p} is an integral domain and $\bar{S}:=\pi(S)$ does not contain 0 , where $\pi: A \rightarrow A / \mathfrak{p}, \pi(a):=a+\mathfrak{p}$. Hence $\bar{S}^{-1}(A / \mathfrak{p})$ can be embedded into the field $Q(A / \mathfrak{p})$ of fractions of A / \mathfrak{p}. Let θ be the composite $A \rightarrow A / \mathfrak{p} \hookrightarrow Q(A / \mathfrak{p})$ homomorphism.

We will continue next time.
A question asked during lecture: Is it true that $\overline{\bigcup_{i \in I} V\left(\mathfrak{a}_{i}\right)}=V\left(\bigcap_{i \in I} \mathfrak{a}_{i}\right)$?
Let $A:=\mathbb{Z}$ and $\mathfrak{a}_{i}:=2^{i} \mathbb{Z}$. Then $V\left(\mathfrak{a}_{i}\right)=\{2 \mathbb{Z}\}$ for any i and $\bigcap_{i} \mathfrak{a}_{i}=0$; and so $V\left(\bigcap_{i} \mathfrak{a}_{i}\right)=\operatorname{Spec}(\mathbb{Z})$. Hence $\bigcup_{i} V\left(\mathfrak{a}_{i}\right)=\{2 \mathbb{Z}\}$ is closed and is not equal to $V\left(\bigcap_{i} \mathfrak{a}_{i}\right)$.

