MATH200C, LECTURE 6

GOLSEFIDY

ZARISKI TOPOLOGY

In the previous lecture we were proving the following.

(1) $\mathfrak{a}|\mathfrak{b} \Rightarrow V(\mathfrak{a}) \subset V(\mathfrak{b}).$ **Proposition 1** (Basics of divisibility for ideals).

- (2) $\operatorname{gcd}(\{\mathfrak{a}_i\}_{i\in I}) = \sum_{i\in I} \mathfrak{a}_i \text{ and } V(\sum_{i\in I} \mathfrak{a}_i) = \bigcap_{i\in I} V(\mathfrak{a}_i).$
- (3) $\operatorname{lcm}(\{\mathfrak{a}_i\}_{i\in I}) = \bigcap_{i\in I} \mathfrak{a}_i \text{ and } V(\bigcap_{i=1}^n \mathfrak{a}_i) = \bigcup_{i=1}^n V(\mathfrak{a}_i); \text{ for an infinite family}$ of ideals equality does not necessarily hold.
- (4) $V(A) = \emptyset$ and $V(0) = \operatorname{Spec}(A)$.

The rest of proof. (3) $\forall i \in I, \mathfrak{a}_i | \mathfrak{b} \Leftrightarrow \forall i \in I, \mathfrak{b} \subseteq \mathfrak{a}_i \Leftrightarrow \mathfrak{b} \subseteq \bigcap_i \mathfrak{a}_i \Leftrightarrow (\bigcap_i \mathfrak{a}_i) | \mathfrak{b}.$ Since $\mathfrak{a}_i | \bigcap_j \mathfrak{a}_j$, $V(\mathfrak{a}_i) \subseteq V(\bigcap_j \mathfrak{a}_j)$; and so $\bigcup_{i \in I} V(\mathfrak{a}_i) \subseteq V(\bigcap_{i \in I} \mathfrak{a}_i)$. Suppose to the contrary that $\mathfrak{p} \in V(\bigcap_{i=1}^n \mathfrak{a}_i) \setminus \bigcap_{i=1}^n V(\mathfrak{a}_i)$; then $\bigcap_{i=1}^n \mathfrak{a}_i \subseteq \mathfrak{p}$ and for any *i* there is $a_i \in \mathfrak{a}_i \setminus \mathfrak{p}$. Therefore $\prod_{i=1}^n a_i \notin \mathfrak{p}$ and $\prod_{i=1}^n a_i \in \bigcap_{i=1}^n \mathfrak{a}_i$, which contradicts $\bigcap_{i=1}^{n} \mathfrak{a}_i \subseteq \mathfrak{p}.$

Let \mathscr{P} be the set of prime numbers in \mathbb{Z} . Then $\bigcap_{p \in \mathscr{P}} p\mathbb{Z} = 0$; and so 0 is in $V(\bigcap_{p\in\mathscr{P}} p\mathbb{Z})$; but 0 is not in $\bigcup_{p\in\mathscr{P}} V(p\mathbb{Z})$.

(4) is clear.

Definition 2 (Zariski topology). Let $\{V(\mathfrak{a})\}_{\mathfrak{a}\triangleleft A}$ be the set of closed subsets of Spec(A). The above proposition shows that this collection of closed sets give us a well-defined topology on $\operatorname{Spec}(A)$. This is called the Zariski topology of $\operatorname{Spec}(A)$.

Before we continue studying the connection between Zariski topology and algebraic properties of the ambient ring, let us prove a technical lemma that will be needed later. This lemma shows us how union of ideals is far from being an ideal. You will see a strengthening of this result in your HW assignment.

Proposition 3. Suppose $\mathfrak{p}_1, \ldots, \mathfrak{p}_n \in \operatorname{Spec}(A)$, $\mathfrak{a} \leq A$, and $\mathfrak{a} \subseteq \bigcup_{i=1}^n \mathfrak{p}_i$. Then $\mathfrak{a} \subseteq \mathfrak{p}_i$ for some i.

GOLSEFIDY

Proof. We proceed by induction on n. So W.L.O.G. we can assume that $\mathfrak{a} \not\subseteq \bigcup_{i \neq i_0} \mathfrak{p}_i$ for any $i_0 \in [1..n]$. Let $a_{i_0} \in \mathfrak{a} \setminus \bigcup_{i \neq i_0} \mathfrak{p}_i$ for any $i_0 \in [1..n]$. Since $\mathfrak{a} \subseteq \bigcup_i \mathfrak{p}_i$, we have that $a_i \in \mathfrak{p}_i$. Let $a := \prod_{i=1}^{n-1} a_i + a_n$. Notice that $a' := \prod_{i=1}^{n-1} a_i \in \bigcap_{i=1}^{n-1} \mathfrak{p}_i$ as $a_i \in \mathfrak{p}_i$ and $a' = \prod_{i=1}^{n-1} a_i \notin \mathfrak{p}_n$ as $a_i \notin \mathfrak{p}_n$ and \mathfrak{p}_n is a prime ideal. On the other hand, $a := a' + a_n \in \mathfrak{a} \subseteq \bigcup_{i=1}^n \mathfrak{p}_i$. So either $a \in \mathfrak{p}_n$ or $a \in \mathfrak{p}_i$ for some $i \leq n-1$.

$$\begin{cases} a \in \mathfrak{p}_n \Rightarrow a' + a_n \in \mathfrak{p}_n \xrightarrow{a_n \in \mathfrak{p}_n} a' \in \mathfrak{p}_n, \text{ which is a contradiction.} \\ a \in \mathfrak{p}_i \Rightarrow a' + a_n \in \mathfrak{p}_i \xrightarrow{a' \in \mathfrak{p}_i} a_n \in \mathfrak{p}_i, \text{ which is a contradiction.} \end{cases}$$

Now we go back to understanding Zariski-topology.

Lemma 4. (1) Any non-empty closed set of Spec(A) intersects Max(A).

- (2) $\{\mathfrak{m} \in \operatorname{Spec}(A) | \mathfrak{m} \text{ is a closed point in } \operatorname{Spec}(A)\} = \operatorname{Max}(A).$
- (3) In an integral domain D, 0 is dense in Spec(A) (that is why it is called the generic point of Spec(A)).

Proof. (1) If $V(\mathfrak{a}) \neq \emptyset$, then \mathfrak{a} is a proper ideal. Hence there is a maximal ideal \mathfrak{m} that contains \mathfrak{a} as a subset. So $\mathfrak{m} \in V(\mathfrak{a})$.

(2) If \mathfrak{m} is a closed point in Spec(A), then there is an ideal \mathfrak{a} such that $V(\mathfrak{a}) = {\mathfrak{m}}$. Now by part (1), $\mathfrak{m} \in Max(A)$.

If $\mathfrak{m} \in Max(A)$, then clearly $V(\mathfrak{m}) = {\mathfrak{m}}.$

(3) is clear.

Contraction and extension of ideals

Lemma 5. Suppose $f : A \to B$ is a ring homomorphism. For $\mathfrak{b} \leq B$, let $\mathfrak{b}^c := f^{-1}(\mathfrak{b})$, and for $\mathfrak{a} \leq A$, let $\mathfrak{a}^e := \langle f(\mathfrak{a}) \rangle$. Then \mathfrak{b}^c is an ideal of A and \mathfrak{a}^e is an ideal of A.

Proof. It is clear.

In the above setting \mathfrak{b}^c is called the contraction of \mathfrak{b} and \mathfrak{a}^e is called the extension of \mathfrak{a} . For any ring A, let ideal(A) be the set of its ideals. So $\mathfrak{b} \mapsto \mathfrak{b}^c$ gives us a function ideal(B) \rightarrow ideal(A) and $\mathfrak{a} \mapsto \mathfrak{a}^e$ gives us a function ideal(A) \rightarrow ideal(B).

Lemma 6. In the above setting, we have:

- (1) $\mathfrak{b}^{ce} \subseteq \mathfrak{b}$ and $\mathfrak{a}^{ec} \supseteq \mathfrak{a}$.
- (2) $\mathfrak{b}^{cec} = \mathfrak{b}^c$ and $\mathfrak{a}^{ece} = \mathfrak{a}^e$.

 $\mathbf{2}$

(3) The contraction and extension maps induce bijections between the set of contracted ideals and extended ideals.

Proof. (1) Since $f(f^{-1}(\mathfrak{b})) \subseteq \mathfrak{b}, \mathfrak{b}^{ce} \subseteq \mathfrak{b}$. Since $f(\mathfrak{a}) \subseteq \mathfrak{a}^{e}$,

$$\mathfrak{a} \subseteq f^{-1}(f(\mathfrak{a})) \subseteq f^{-1}(\mathfrak{a}^e) = \mathfrak{a}^{ec}.$$

(2) $\mathfrak{b}^{cec} = (\mathfrak{b}^c)^{ec} \supseteq \mathfrak{b}^c$ and $\mathfrak{b}^{cec} = (\mathfrak{b}^{ce})^c \subseteq \mathfrak{b}^c$; and so $\mathfrak{b}^{cec} = \mathfrak{b}^c$. $\mathfrak{a}^{ece} = (\mathfrak{a}^{ec})^e \supseteq \mathfrak{a}^e$ and $\mathfrak{a}^{ece} = (\mathfrak{a}^e)^{ce} \subseteq \mathfrak{a}^e$; and so $\mathfrak{a}^{ece} = \mathfrak{a}^e$. (3) is clear because of (2).

Lemma 7. In the above setting, $A/\mathfrak{b}^c \hookrightarrow B/\mathfrak{b}$ for any $\mathfrak{b} \in \text{ideal}(B)$.

Proof. Let $\overline{f} : A \to B/\mathfrak{b}, \overline{f}(a) := f(a) + \mathfrak{b}$. Then ker $\overline{f} = \mathfrak{b}^c$; and so by the first isomorphism theorem claim follows.

Proposition 8. Suppose $f : A \to B$ is a ring homomorphism. Then

 $f^* : \operatorname{Spec}(B) \to \operatorname{Spec}(A), f^*(\mathfrak{q}) := \mathfrak{q}^c$

is a continuous map.

Proof. By the previous lemma, $A/f^*(\mathfrak{q})$ can be embedded into B/\mathfrak{q} . Since \mathfrak{q} is a prime ideal, B/\mathfrak{q} is an integral domain. Hence $A/f^*(\mathfrak{q})$ is an integral domain (notice that $f(1_A) = 1_B$ and so $f^*(\mathfrak{q})$ is a proper ideal). Therefore $f^*(\mathfrak{q})$ is a prime ideal. We also have

$$f^*(\mathfrak{q}) \in V(\mathfrak{a}) \Leftrightarrow \mathfrak{a} \subseteq \mathfrak{q}^c \Leftrightarrow \mathfrak{a}^e \subseteq \mathfrak{q} \Leftrightarrow \mathfrak{q} \in V(\mathfrak{a}^e),$$

which means $(f^*)^{-1}(V(\mathfrak{a})) = V(\mathfrak{a}^e)$; and so preimage of a closed set under f^* is closed. Therefore f^* is continuous.

Lemma 9. Let $\pi : A \to A/\mathfrak{a}, \pi(a) := a + \mathfrak{a}$. Then π^* induces a homeomorphism between $\operatorname{Spec}(A/\mathfrak{a})$ and $V(\mathfrak{a})$.

Proof. Suppose $\overline{\mathfrak{p}} \in \operatorname{Spec}(A/\mathfrak{a})$; then $\mathfrak{a} = \ker \pi \subseteq \pi^*(\overline{\mathfrak{p}})$. Hence $\pi^*(\overline{\mathfrak{p}}) \in V(\mathfrak{a})$.

If $\mathfrak{p} \in V(\mathfrak{a})$, then $\mathfrak{p}/\mathfrak{a} \in \text{ideal}(A/\mathfrak{a})$ and $(A/\mathfrak{a})/(\mathfrak{p}/\mathfrak{a}) \simeq A/\mathfrak{p}$ is an integral domain. Hence $\overline{\mathfrak{p}} := \mathfrak{p}/\mathfrak{a} \in \text{Spec}(A/\mathfrak{a})$; and $\mathfrak{p} = \pi^*(\overline{\mathfrak{p}})$.

If $\mathfrak{p} := \pi^*(\overline{\mathfrak{p}}_1) = \pi^*(\overline{\mathfrak{p}}_2)$, then $\overline{\mathfrak{p}}_i = \mathfrak{p}/\mathfrak{a}$ for any i; and so π^* is injective. For any $\overline{\mathfrak{b}} \in \text{ideal}(A/\mathfrak{a}), \ \overline{\mathfrak{b}} = \overline{\mathfrak{b}}^c/\mathfrak{a}$. Hence

$$\overline{\mathfrak{p}} \in V(\overline{\mathfrak{b}}) \Leftrightarrow \overline{\mathfrak{b}} \subseteq \overline{\mathfrak{p}} \Leftrightarrow \overline{\mathfrak{b}}^c / \mathfrak{a} \subseteq \overline{\mathfrak{p}}^c / \mathfrak{a} \Leftrightarrow \overline{\mathfrak{b}}^c \subseteq \overline{\mathfrak{p}}^c \Leftrightarrow f^*(\overline{\mathfrak{p}}) \in V(\overline{\mathfrak{b}}^c),$$

which implies f^* is a closed map; and claim follows.

GOLSEFIDY

Lemma 10. Let $f: A \to S^{-1}A, f(a) := a/1$. Then for any $\mathfrak{a} \in \text{ideal}(A), \mathfrak{a}^e =$ $S^{-1}\mathfrak{a}$ and for any $\widetilde{\mathfrak{a}} \in ideal(S^{-1}A), \ \widetilde{\mathfrak{a}} = \widetilde{\mathfrak{a}}^{ce}$.

Proof. For any $s \in S$ and $a \in \mathfrak{a}$, $a/s = (1/s)(a/1) \in \mathfrak{a}^e$; and so $S^{-1}\mathfrak{a} \subseteq \mathfrak{a}^e$. We have seen that $S^{-1}\mathfrak{a}$ is an ideal of $S^{-1}A$. Hence $\mathfrak{a}^e = S^{-1}A$.

Let $\mathfrak{a} := \widetilde{\mathfrak{a}}^c$. Then $\widetilde{\mathfrak{a}} \supset \mathfrak{a}^e$. On the other hand,

$$a/s \in \widetilde{\mathfrak{a}} \Rightarrow (s/1)(a/s) \in \widetilde{\mathfrak{a}} \Rightarrow a/1 \in \widetilde{\mathfrak{a}} \Rightarrow a \in \widetilde{\mathfrak{a}}^c = \mathfrak{a} \Rightarrow a/s \in S^{-1}\mathfrak{a} = \mathfrak{a}^e;$$

claim follows.

and claim follows.

Corollary 11. Let $f: A \to S^{-1}A, f(a) := a/1$. Then contraction is an injective map ideal($S^{-1}A$) \rightarrow ideal(A) and extension is a surjective map ideal(A) \rightarrow $ideal(S^{-1}A)$

Lemma 12. Let $f : A \to S^{-1}A$, f(a) := a/1. Then f^* induces a bijection between Spec($S^{-1}A$) and $\{\mathfrak{p} \in Spec(A) | \mathfrak{p} \cap S = \emptyset\}$. Moreover if $\mathfrak{p} \in Spec(A)$ and $\mathfrak{p} \cap S = \emptyset$, then $\mathfrak{p}^{ec} = \mathfrak{p}$.

Proof. Step 1. By the above Corollary, contraction is injective; and so f^* is injective.

Step 2. If $f^*(\widetilde{\mathfrak{p}}) = \mathfrak{p}$, then by the above Lemma $\widetilde{\mathfrak{p}} = S^{-1}\mathfrak{p}$; in particular, $S^{-1}\mathfrak{p}$ is a proper ideal. This implies $S \cap \mathfrak{p} = \emptyset$.

Step 3. Suppose $\mathfrak{p} \in \operatorname{Spec}(A)$ and $\mathfrak{p} \cap S = \emptyset$. Then A/\mathfrak{p} is an integral domain and $\overline{S} := \pi(S)$ does not contain 0, where $\pi : A \to A/\mathfrak{p}, \pi(a) := a + \mathfrak{p}$. Hence $\overline{S}^{-1}(A/\mathfrak{p})$ can be embedded into the field $Q(A/\mathfrak{p})$ of fractions of A/\mathfrak{p} . Let θ be the composite $A \to A/\mathfrak{p} \hookrightarrow Q(A/\mathfrak{p})$ homomorphism.

We will continue next time.

A question asked during lecture: Is it true that $\overline{\bigcup_{i \in I} V(\mathfrak{a}_i)} = V(\bigcap_{i \in I} \mathfrak{a}_i)$?

Let $A := \mathbb{Z}$ and $\mathfrak{a}_i := 2^i \mathbb{Z}$. Then $V(\mathfrak{a}_i) = \{2\mathbb{Z}\}$ for any i and $\bigcap_i \mathfrak{a}_i = 0$; and so $V(\bigcap_i \mathfrak{a}_i) = \operatorname{Spec}(\mathbb{Z})$. Hence $\bigcup_i V(\mathfrak{a}_i) = \{2\mathbb{Z}\}$ is closed and is not equal to $V(\bigcap_i \mathfrak{a}_i).$

4