MATH200C, LECTURE 7

GOLSEFIDY

Localization

We were proving the following:
Lemma 1. Let $f: A \rightarrow S^{-1} A, f(a):=a / 1$. Then f^{*} induces a bijection between $\operatorname{Spec}\left(S^{-1} A\right)$ and $\{\mathfrak{p} \in \operatorname{Spec}(A) \mid \mathfrak{p} \cap S=\varnothing\}$. Moreover if $\mathfrak{p} \in \operatorname{Spec}(A)$ and $\mathfrak{p} \cap S=$ \varnothing, then $\mathfrak{p}^{e c}=\mathfrak{p}$.

Proof. (Continue) We have already proved that f^{*} is injective and $f^{*}(\widetilde{\mathfrak{p}}) \cap S=\varnothing$. We were in the middle of the third step.

Step 3. Suppose $\mathfrak{p} \in \operatorname{Spec}(A)$ and $\mathfrak{p} \cap S=\varnothing$. Then A / \mathfrak{p} is an integral domain and $\bar{S}:=\pi(S)$ does not contain 0 , where $\pi: A \rightarrow A / \mathfrak{p}, \pi(a):=a+\mathfrak{p}$. Hence $\bar{S}^{-1}(A / \mathfrak{p})$ can be embedded into the field $Q(A / \mathfrak{p})$ of fractions of A / \mathfrak{p}. Let θ be the composite $A \rightarrow A / \mathfrak{p} \hookrightarrow Q(A / \mathfrak{p})$ homomorphism. Then $\theta(S) \subseteq Q(A / \mathfrak{p})^{\times}$; hence by the universal property of localization, there is a ring homomorphism $\widetilde{\theta}: S^{-1} A \rightarrow Q(A / \mathfrak{p}), \widetilde{\theta}(a / s):=\pi(a) / \pi(s)$. Notice that

$$
a / s \in \operatorname{ker} \widetilde{\theta} \Leftrightarrow \pi(a) / \pi(s)=0 \Leftrightarrow \pi(a)=0 \Leftrightarrow a \in \mathfrak{p} .
$$

Therefore $\operatorname{ker} \widetilde{\theta}=S^{-1} \mathfrak{p}$, which implies that $S^{-1} A / S^{-1} \mathfrak{p}$ can be embedded into $Q(A / \mathfrak{p})$; and so it is either an integral domain or it is zero. Thus either $S^{-1} \mathfrak{p} \in$ $\operatorname{Spec}\left(S^{-1} A\right)$ or $S^{-1} \mathfrak{p}=S^{-1} A$.

Step 4. Suppose $\mathfrak{p} \in \operatorname{Spec}(A)$ and $\mathfrak{p} \cap S=\varnothing$. We know that $\mathfrak{p}^{e c} \supseteq \mathfrak{p}$. If $x \in \mathfrak{p}^{e c}$, then $x / 1 \in S^{-1} \mathfrak{p}$. Hence there is $s \in S$ such that $s x \in \mathfrak{p}$. As \mathfrak{p} is prime, either $s \in \mathfrak{p}$ or $x \in \mathfrak{p}$. Since $\mathfrak{p} \cap S=\varnothing$, we deduce that $x \in \mathfrak{p}$. Thus $\mathfrak{p}^{e c}=\mathfrak{p}$.

Fiber over a prime ideal

Theorem 2. Suppose $f: A \rightarrow B$ is a ring homomorphism and $\mathfrak{p} \in \operatorname{Spec}(A)$. Let $S_{\mathfrak{p}}:=A \backslash \mathfrak{p}$, and θ be the composite the following homomorphisms

$$
B \xrightarrow{i} f\left(S_{\mathfrak{p}}\right)^{-1} B \xrightarrow{\pi} f\left(S_{\mathfrak{p}}\right)^{-1} B / f\left(S_{\mathfrak{p}}\right)^{-1} \mathfrak{p}^{e} .
$$

Then
(1) θ^{*} gives us a bijection between $\operatorname{Spec}\left(f\left(S_{\mathfrak{p}}\right)^{-1} B / f\left(S_{\mathfrak{p}}\right)^{-1} \mathfrak{p}^{e}\right)$ and $\left(f^{*}\right)^{-1}(\mathfrak{p})$.
(2) $B \otimes_{A} Q(A / \mathfrak{p}) \simeq f\left(S_{\mathfrak{p}}\right)^{-1} B / f\left(S_{\mathfrak{p}}\right)^{-1} \mathfrak{p}^{e}$; and so there is a bijection between $\operatorname{Spec}\left(B \otimes_{A} Q(A / \mathfrak{p})\right)$ and $\left(f^{*}\right)^{-1}(\mathfrak{p})$.
(3) $\mathfrak{p} \in \operatorname{Im}\left(f^{*}\right)$ if and only if $\mathfrak{p}^{e c}=\mathfrak{p}$.

Proof. (1) Notice that $\theta^{*}=i^{*} \circ \pi^{*}$. We have proved that i^{*} induces a bijection between $\operatorname{Spec}\left(f\left(S_{\mathfrak{p}}\right)^{-1} B\right)$ and

$$
\left\{\mathfrak{q} \in \operatorname{Spec} B \mid \mathfrak{q} \cap f\left(S_{\mathfrak{p}}\right)=\varnothing\right\}=\left\{\mathfrak{q} \in \operatorname{Spec} B \mid f^{*}(\mathfrak{q}) \subseteq \mathfrak{p}\right\} ;
$$

and π^{*} induces a bijection between $\operatorname{Spec}\left(f\left(S_{\mathfrak{p}}\right)^{-1} B / f\left(S_{\mathfrak{p}}\right)^{-1} \mathfrak{p}^{e}\right)$ and

$$
V\left(f\left(S_{\mathfrak{p}}\right)^{-1} \mathfrak{p}^{e}\right)=\left\{\tilde{\mathfrak{q}} \in \operatorname{Spec}\left(f\left(S_{\mathfrak{p}}\right)^{-1} B\right) \mid f\left(S_{\mathfrak{p}}\right)^{-1} \mathfrak{p}^{e} \subseteq \tilde{\mathfrak{q}}\right\} .
$$

We have

$$
\begin{aligned}
\tilde{\mathfrak{q}} \in V\left(f\left(S_{\mathfrak{p}}\right)^{-1} \mathfrak{p}^{e}\right) & \Leftrightarrow \exists!\mathfrak{q} \in \operatorname{Spec} B, f^{*}(\mathfrak{q}) \subseteq \mathfrak{p}, \tilde{\mathfrak{q}}=f\left(S_{\mathfrak{p}}\right)^{-1} \mathfrak{q}, f\left(S_{\mathfrak{p}}\right)^{-1} \mathfrak{p}^{e} \subseteq f\left(S_{\mathfrak{p}}\right)^{-1} \mathfrak{q} \\
& \Leftrightarrow \exists!\mathfrak{q} \in \operatorname{Spec} B, \widetilde{\mathfrak{q}}=f\left(S_{\mathfrak{p}}\right)^{-1} \mathfrak{q}, f^{*}(\mathfrak{q}) \subseteq \mathfrak{p}, \mathfrak{p}^{e} \subseteq \mathfrak{q} \\
& \Leftrightarrow \exists!\mathfrak{q} \in \operatorname{Spec} B, \widetilde{\mathfrak{q}}=f\left(S_{\mathfrak{p}}\right)^{-1} \mathfrak{q}, f^{*}(\mathfrak{q}) \subseteq \mathfrak{p}, \mathfrak{p} \subseteq f^{*}(\mathfrak{q}) \\
& \Leftrightarrow \exists!\mathfrak{q} \in \operatorname{Spec} B, \widetilde{\mathfrak{q}}=f\left(S_{\mathfrak{p}}\right)^{-1} \mathfrak{q}, f^{*}(\mathfrak{q})=\mathfrak{p} .
\end{aligned}
$$

(Notice that $\mathfrak{p}^{e} \subseteq \mathfrak{q}$ implies $\mathfrak{p}^{e c} \subseteq \mathfrak{q}^{c}$; and so $\mathfrak{p} \subseteq \mathfrak{q}^{c}$. And $\mathfrak{p} \subseteq \mathfrak{q}^{c}$ implies $\mathfrak{p}^{e} \subseteq \mathfrak{q}^{c e} \subseteq \mathfrak{q}$. Hence $\mathfrak{p}^{e} \subseteq \mathfrak{q} \Leftrightarrow \mathfrak{p} \subseteq \mathfrak{q}^{c}$.) Overall we get the claim.

Part (2) is part of your HW assignment.
(3)

$$
\begin{aligned}
\mathfrak{p} \in \operatorname{Im}\left(f^{*}\right) & \Leftrightarrow\left(f^{*}\right)^{-1}(\mathfrak{p}) \neq \varnothing \\
& \Leftrightarrow f\left(S_{\mathfrak{p}}\right)^{-1} \mathfrak{p}^{e} \neq f\left(S_{\mathfrak{p}}\right)^{-1} B \\
& \Leftrightarrow \mathfrak{p}^{e} \cap f\left(S_{\mathfrak{p}}\right)=\varnothing \Leftrightarrow \mathfrak{p}^{e c} \cap S_{\mathfrak{p}}=\varnothing \\
& \Leftrightarrow \mathfrak{p}^{e c} \subseteq \mathfrak{p} \Leftrightarrow \mathfrak{p}^{e c}=\mathfrak{p} .
\end{aligned}
$$

NakAyama's lemma

In math200B you have learned about Nakayama's lemma. Now we give an alternative approach which shows a more general result.

Proposition 3. Suppose M is a finitely generated A-module, $\phi \in \operatorname{End}_{A}(M)$, $\mathfrak{a} \unlhd A$, and $\phi(M) \subseteq \mathfrak{a} M$. Then

$$
\begin{equation*}
\phi^{n}+a_{n-1} \phi^{n-1}+\cdots+a_{1} \phi+a_{0}=0 \tag{1}
\end{equation*}
$$

for some $a_{i} \in \mathfrak{a}$.
Proof. Let $\widetilde{R}:=\operatorname{End}_{A}(M)$. We know that \widetilde{R} is a ring (which is not necessarily commutative). We have also seen that $A \rightarrow \widetilde{R}, a \mapsto \bar{a}$, where $\bar{a}(m):=a \cdot m$ is a ring homomorphism. Let $\bar{A}:=\{\bar{a} \mid a \in A\}$. Then $R:=\bar{A}[\phi]$ is a commutative subring of \widetilde{R}. If carefully written, (1) is an equation in R :

$$
\phi^{n}+\bar{a}_{n-1} \phi^{n-1}+\cdots+\bar{a}_{1} \phi+\bar{a}_{0}=0 .
$$

Suppose $M=A m_{1}+\cdots+A m_{k}$. Then an element $\psi \in \widetilde{R}$ is zero if and only if $\psi\left(m_{i}\right)=0$ for any i; and so it is enough to show for some a_{j} 's,

$$
\left(\phi^{n}+\bar{a}_{n-1} \phi^{n-1}+\cdots+\bar{a}_{1} \phi+\bar{a}_{0}\right)\left(m_{i}\right)=0
$$

for any i.
Since $\phi(M) \subseteq \mathfrak{a} M$, for any i, there are $a_{i j} \in \mathfrak{a}$ such that

$$
\phi\left(m_{i}\right)=a_{i 1} m_{1}+\cdots+a_{i k} m_{k} .
$$

Symbolically these equations can be written as

$$
\underbrace{\left(\begin{array}{ccc}
\bar{a}_{11} & \cdots & \bar{a}_{1 k} \\
\vdots & \ddots & \vdots \\
\bar{a}_{k 1} & \cdots & \bar{a}_{k k}
\end{array}\right)}_{T} \underbrace{\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{k}
\end{array}\right)}_{\vec{m}}=\left(\begin{array}{c}
\phi\left(m_{1}\right) \\
\vdots \\
\phi\left(m_{k}\right)
\end{array}\right) .
$$

Hence $(\phi I-T) \vec{m}=0$; multiplying both sides by the adjoint of $\phi I-T$ in $M_{k}(R)$, we get

$$
\operatorname{det}(\phi I-T) \vec{m}=0 .
$$

This means $\operatorname{det}(\phi I-T)=0$. Notice that $x I-T=x I(\bmod \mathfrak{a}) ;$ and so $\operatorname{det}(x I-$ $T)=x^{k}(\bmod \mathfrak{a})$. That means there are $a_{i} \in \mathfrak{a}$ such that

$$
\operatorname{det}(x I-T)=x^{k}+\bar{a}_{k-1} x^{k-1}+\cdots+\bar{a}_{0} .
$$

Therefore

$$
\phi^{k}+\bar{a}_{k-1} \phi^{k-1}+\cdots+\bar{a}_{0}=0 .
$$

Corollary 4. Suppose M is a finitely generated A-module, $\mathfrak{a} \unlhd A$, and $M=\mathfrak{a} M$. Then there is $a \in A$ such that $a M=0$ and $a \equiv 1(\bmod \mathfrak{a})$.

Proof. Suppose $a_{i} \in \mathfrak{a}$ are the ones given by Proposition 3 for $\phi:=\operatorname{Id}_{M}$. Let $a:=1+\sum_{i=0}^{n-1} a_{i}$. Then $\operatorname{Id}_{M}+\bar{a}_{n-1} \operatorname{Id}_{M}+\cdots+\bar{a}_{0}=0$ implies that $a M=0$; and clearly $a \equiv 1(\bmod \mathfrak{a})$.

Lemma 5 (Nakayama's lemma). Suppose M is a finitely generated A-module. If $J(A) M=0$, then $M=0$.

Proof. By the previous corollary there is $a \in A$ such that $a M=0$ and $a \equiv 1$ $(\bmod J(A))$. So $a \in 1+J(A) \subseteq A^{\times}$. Therefore $a M=0$ implies that $M=0$.

Primary ideals

We would like to have a general version of prime factorization at least for ideals. It turns out that instead of using powers of primes ideals, we have to work with primary ideals.

Definition 6. We say $\mathfrak{q} \unlhd A$ is a primary ideal if \mathfrak{q} is a proper ideal and $x y \in \mathfrak{q}$ implies that either $x \in \mathfrak{q}$ or $y^{n} \in \mathfrak{q}$ for some positive integer n.

Lemma 7. Suppose \mathfrak{q} is a proper ideal of $A ; \mathfrak{q} \unlhd A$ is a primary ideal if and only if any zero-divisor of A / \mathfrak{q} is nilpotent.

Proof. (\Rightarrow) Suppose $\bar{x} \in D(A / \mathfrak{q})$ where $D(A / \mathfrak{q})$ is the set of zero-divisors of A / \mathfrak{q}. Then there is $\bar{y} \in A / \mathfrak{q} \backslash\{0\}$ such that $\overline{x y}=0$; that means $y \notin \mathfrak{q}$ and $x y \in \mathfrak{q}$. Since \mathfrak{q} is primary, we deduce that $x^{n} \in \mathfrak{q}$ for some positive integer n. Hence $\bar{x}^{n}=0$ in A / \mathfrak{q}, which means \bar{x} is nilpotent in A / \mathfrak{q}.
(\Leftarrow) Suppose $x y \in \mathfrak{q}$ and $x \notin \mathfrak{q}$. Then $\overline{x y}=0$ in A / \mathfrak{q} and $\bar{x} \neq 0$. Hence $\bar{y} \in D(A / \mathfrak{q})$, which implies that there is a positive integer n such that $\bar{y}^{n}=0$. Therefore $y^{n} \in \mathfrak{q}$.
(Here $\bar{z}:=z+\mathfrak{q}$ for any $z \in A$.)
Lemma 8. If \mathfrak{q} is primary, then $\sqrt{\mathfrak{q}}=\mathfrak{p}$ is a prime ideal; and so $\sqrt{\mathfrak{q}}$ is the smallest prime divisor of \mathfrak{q}.

Proof. Suppose to the contrary that there are $x, y \in A$ such that $x, y \notin \sqrt{\mathfrak{q}}$ and $x y \in \sqrt{\mathfrak{q}}$. Then for some positive integer $n,(x y)^{n} \in \mathfrak{q}$ and $x^{n} \notin \mathfrak{q}$. Since \mathfrak{q} is
primary, there is a positive integer m such that $\left(y^{n}\right)^{m} \in \mathfrak{q}$. This implies that $y \in \sqrt{\mathfrak{q}}$, which is a contradiction.

Since $\mathfrak{p}:=\sqrt{\mathfrak{q}}=\bigcap_{\mathfrak{p}^{\prime} \in V(\mathfrak{q})} \mathfrak{p}^{\prime}$, we have that $\mathfrak{p} \subseteq \mathfrak{p}^{\prime}$ for any $\mathfrak{p}^{\prime} \in V(\mathfrak{q})$. As $\mathfrak{p} \in V(\mathfrak{q})$, we have that \mathfrak{p} is the smallest prime divisor of \mathfrak{q}.

Definition 9. A primary ideal \mathfrak{q} is called \mathfrak{p}-primary if $\sqrt{\mathfrak{q}}=\mathfrak{p}$.
The converse of the above lemma does not hold in general; but if $\sqrt{\mathfrak{q}}$ is a maximal ideal, then we can deduce that \mathfrak{q} is primary.

Lemma 10. If $\mathfrak{m} \in \operatorname{Max}(A)$ and $\sqrt{\mathfrak{q}}=\mathfrak{m}$, then \mathfrak{q} is \mathfrak{m}-primary.
Proof. Since $\sqrt{\mathfrak{q}}=\bigcap_{\mathfrak{p} \in V(\mathfrak{q})} \mathfrak{p}=\mathfrak{m}$, we have that $\mathfrak{q} \subseteq \mathfrak{p} \Rightarrow \mathfrak{m} \subseteq \mathfrak{p}$. Since \mathfrak{m} is a maximal ideal, we have $V(\mathfrak{q})=\{\mathfrak{m}\}$.

We will continue in the next lecture.

