MATH200C, LECTURE 7

GOLSEFIDY

LOCALIZATION

We were proving the following:

Lemma 1. Let $f : A \to S^{-1}A$, f(a) := a/1. Then f^* induces a bijection between $\operatorname{Spec}(S^{-1}A)$ and $\{\mathfrak{p} \in \operatorname{Spec}(A) | \mathfrak{p} \cap S = \emptyset\}$. Moreover if $\mathfrak{p} \in \operatorname{Spec}(A)$ and $\mathfrak{p} \cap S = \emptyset$, then $\mathfrak{p}^{ec} = \mathfrak{p}$.

Proof. (Continue) We have already proved that f^* is injective and $f^*(\tilde{\mathfrak{p}}) \cap S = \emptyset$. We were in the middle of the third step.

Step 3. Suppose $\mathfrak{p} \in \operatorname{Spec}(A)$ and $\mathfrak{p} \cap S = \emptyset$. Then A/\mathfrak{p} is an integral domain and $\overline{S} := \pi(S)$ does not contain 0, where $\pi : A \to A/\mathfrak{p}, \pi(a) := a + \mathfrak{p}$. Hence $\overline{S}^{-1}(A/\mathfrak{p})$ can be embedded into the field $Q(A/\mathfrak{p})$ of fractions of A/\mathfrak{p} . Let θ be the composite $A \to A/\mathfrak{p} \hookrightarrow Q(A/\mathfrak{p})$ homomorphism. Then $\theta(S) \subseteq Q(A/\mathfrak{p})^{\times}$; hence by the universal property of localization, there is a ring homomorphism $\widetilde{\theta} : S^{-1}A \to Q(A/\mathfrak{p}), \widetilde{\theta}(a/s) := \pi(a)/\pi(s)$. Notice that

$$a/s \in \ker \theta \Leftrightarrow \pi(a)/\pi(s) = 0 \Leftrightarrow \pi(a) = 0 \Leftrightarrow a \in \mathfrak{p}.$$

Therefore ker $\tilde{\theta} = S^{-1}\mathfrak{p}$, which implies that $S^{-1}A/S^{-1}\mathfrak{p}$ can be embedded into $Q(A/\mathfrak{p})$; and so it is either an integral domain or it is zero. Thus either $S^{-1}\mathfrak{p} \in \text{Spec}(S^{-1}A)$ or $S^{-1}\mathfrak{p} = S^{-1}A$.

Step 4. Suppose $\mathfrak{p} \in \operatorname{Spec}(A)$ and $\mathfrak{p} \cap S = \emptyset$. We know that $\mathfrak{p}^{ec} \supseteq \mathfrak{p}$. If $x \in \mathfrak{p}^{ec}$, then $x/1 \in S^{-1}\mathfrak{p}$. Hence there is $s \in S$ such that $sx \in \mathfrak{p}$. As \mathfrak{p} is prime, either $s \in \mathfrak{p}$ or $x \in \mathfrak{p}$. Since $\mathfrak{p} \cap S = \emptyset$, we deduce that $x \in \mathfrak{p}$. Thus $\mathfrak{p}^{ec} = \mathfrak{p}$. \Box

FIBER OVER A PRIME IDEAL

Theorem 2. Suppose $f : A \to B$ is a ring homomorphism and $\mathfrak{p} \in \operatorname{Spec}(A)$. Let $S_{\mathfrak{p}} := A \setminus \mathfrak{p}$, and θ be the composite the following homomorphisms

$$B \xrightarrow{\imath} f(S_{\mathfrak{p}})^{-1}B \xrightarrow{\pi} f(S_{\mathfrak{p}})^{-1}B/f(S_{\mathfrak{p}})^{-1}\mathfrak{p}^{e}.$$

GOLSEFIDY

Then

2

(1) θ* gives us a bijection between Spec(f(S_p)⁻¹B/f(S_p)⁻¹p^e) and (f*)⁻¹(p).
(2) B ⊗_A Q(A/p) ≃ f(S_p)⁻¹B/f(S_p)⁻¹p^e; and so there is a bijection between Spec(B ⊗_A Q(A/p)) and (f*)⁻¹(p).
(3) p ∈ Im(f*) if and only if p^{ec} = p.

Proof. (1) Notice that $\theta^* = i^* \circ \pi^*$. We have proved that i^* induces a bijection between $\text{Spec}(f(S_p)^{-1}B)$ and

$$\{\mathfrak{q} \in \operatorname{Spec} B | \mathfrak{q} \cap f(S_{\mathfrak{p}}) = \emptyset\} = \{\mathfrak{q} \in \operatorname{Spec} B | f^*(\mathfrak{q}) \subseteq \mathfrak{p}\};$$

and π^* induces a bijection between $\operatorname{Spec}(f(S_{\mathfrak{p}})^{-1}B/f(S_{\mathfrak{p}})^{-1}\mathfrak{p}^e)$ and

$$V(f(S_{\mathfrak{p}})^{-1}\mathfrak{p}^{e}) = \{ \widetilde{\mathfrak{q}} \in \operatorname{Spec}(f(S_{\mathfrak{p}})^{-1}B) | f(S_{\mathfrak{p}})^{-1}\mathfrak{p}^{e} \subseteq \widetilde{\mathfrak{q}} \}.$$

We have

$$\begin{split} \widetilde{\mathfrak{q}} &\in V(f(S_{\mathfrak{p}})^{-1}\mathfrak{p}^{e}) \Leftrightarrow \exists !\mathfrak{q} \in \operatorname{Spec} B, f^{*}(\mathfrak{q}) \subseteq \mathfrak{p}, \widetilde{\mathfrak{q}} = f(S_{\mathfrak{p}})^{-1}\mathfrak{q}, f(S_{\mathfrak{p}})^{-1}\mathfrak{p}^{e} \subseteq f(S_{\mathfrak{p}})^{-1}\mathfrak{q} \\ &\Leftrightarrow \exists !\mathfrak{q} \in \operatorname{Spec} B, \widetilde{\mathfrak{q}} = f(S_{\mathfrak{p}})^{-1}\mathfrak{q}, f^{*}(\mathfrak{q}) \subseteq \mathfrak{p}, \mathfrak{p}^{e} \subseteq \mathfrak{q} \\ &\Leftrightarrow \exists !\mathfrak{q} \in \operatorname{Spec} B, \widetilde{\mathfrak{q}} = f(S_{\mathfrak{p}})^{-1}\mathfrak{q}, f^{*}(\mathfrak{q}) \subseteq \mathfrak{p}, \mathfrak{p} \subseteq f^{*}(\mathfrak{q}) \\ &\Leftrightarrow \exists !\mathfrak{q} \in \operatorname{Spec} B, \widetilde{\mathfrak{q}} = f(S_{\mathfrak{p}})^{-1}\mathfrak{q}, f^{*}(\mathfrak{q}) = \mathfrak{p}. \end{split}$$

(Notice that $\mathfrak{p}^e \subseteq \mathfrak{q}$ implies $\mathfrak{p}^{ec} \subseteq \mathfrak{q}^c$; and so $\mathfrak{p} \subseteq \mathfrak{q}^c$. And $\mathfrak{p} \subseteq \mathfrak{q}^c$ implies $\mathfrak{p}^e \subseteq \mathfrak{q}^{ce} \subseteq \mathfrak{q}$. Hence $\mathfrak{p}^e \subseteq \mathfrak{q} \Leftrightarrow \mathfrak{p} \subseteq \mathfrak{q}^c$.) Overall we get the claim.

Part (2) is part of your HW assignment.

(3)

$$\mathfrak{p} \in \mathrm{Im}(f^*) \Leftrightarrow (f^*)^{-1}(\mathfrak{p}) \neq \varnothing$$
$$\Leftrightarrow f(S_\mathfrak{p})^{-1}\mathfrak{p}^e \neq f(S_\mathfrak{p})^{-1}B$$
$$\Leftrightarrow \mathfrak{p}^e \cap f(S_\mathfrak{p}) = \varnothing \Leftrightarrow \mathfrak{p}^{ec} \cap S_\mathfrak{p} = \varnothing$$
$$\Leftrightarrow \mathfrak{p}^{ec} \subseteq \mathfrak{p} \Leftrightarrow \mathfrak{p}^{ec} = \mathfrak{p}.$$

NAKAYAMA'S LEMMA

In math200B you have learned about Nakayama's lemma. Now we give an alternative approach which shows a more general result.

Proposition 3. Suppose M is a finitely generated A-module, $\phi \in \text{End}_A(M)$, $\mathfrak{a} \leq A$, and $\phi(M) \subseteq \mathfrak{a}M$. Then

(1)
$$\phi^n + a_{n-1}\phi^{n-1} + \dots + a_1\phi + a_0 = 0$$

for some $a_i \in \mathfrak{a}$.

Proof. Let $\widetilde{R} := \operatorname{End}_A(M)$. We know that \widetilde{R} is a ring (which is not necessarily commutative). We have also seen that $A \to \widetilde{R}, a \mapsto \overline{a}$, where $\overline{a}(m) := a \cdot m$ is a ring homomorphism. Let $\overline{A} := \{\overline{a} | a \in A\}$. Then $R := \overline{A}[\phi]$ is a commutative subring of \widetilde{R} . If carefully written, (1) is an equation in R:

$$\phi^n + \overline{a}_{n-1}\phi^{n-1} + \dots + \overline{a}_1\phi + \overline{a}_0 = 0$$

Suppose $M = Am_1 + \cdots + Am_k$. Then an element $\psi \in \tilde{R}$ is zero if and only if $\psi(m_i) = 0$ for any *i*; and so it is enough to show for some a_j 's,

$$(\phi^n + \overline{a}_{n-1}\phi^{n-1} + \dots + \overline{a}_1\phi + \overline{a}_0)(m_i) = 0$$

for any i.

Since $\phi(M) \subseteq \mathfrak{a}M$, for any *i*, there are $a_{ij} \in \mathfrak{a}$ such that

$$\phi(m_i) = a_{i1}m_1 + \dots + a_{ik}m_k.$$

Symbolically these equations can be written as

$$\underbrace{\begin{pmatrix} \overline{a}_{11} & \cdots & \overline{a}_{1k} \\ \vdots & \ddots & \vdots \\ \overline{a}_{k1} & \cdots & \overline{a}_{kk} \end{pmatrix}}_{T} \underbrace{\begin{pmatrix} m_1 \\ \vdots \\ m_k \end{pmatrix}}_{\vec{m}} = \begin{pmatrix} \phi(m_1) \\ \vdots \\ \phi(m_k) \end{pmatrix}.$$

Hence $(\phi I - T)\vec{m} = 0$; multiplying both sides by the adjoint of $\phi I - T$ in $M_k(R)$, we get

$$\det(\phi I - T)\vec{m} = 0$$

This means $\det(\phi I - T) = 0$. Notice that $xI - T = xI \pmod{\mathfrak{a}}$; and so $\det(xI - T) = x^k \pmod{\mathfrak{a}}$. That means there are $a_i \in \mathfrak{a}$ such that

$$\det(xI - T) = x^k + \overline{a}_{k-1}x^{k-1} + \dots + \overline{a}_0.$$

Therefore

$$\phi^k + \overline{a}_{k-1}\phi^{k-1} + \dots + \overline{a}_0 = 0$$

GOLSEFIDY

Corollary 4. Suppose M is a finitely generated A-module, $\mathfrak{a} \leq A$, and $M = \mathfrak{a}M$. Then there is $a \in A$ such that aM = 0 and $a \equiv 1 \pmod{\mathfrak{a}}$.

Proof. Suppose $a_i \in \mathfrak{a}$ are the ones given by Proposition 3 for $\phi := \operatorname{Id}_M$. Let $a := 1 + \sum_{i=0}^{n-1} a_i$. Then $\operatorname{Id}_M + \overline{a}_{n-1} \operatorname{Id}_M + \cdots + \overline{a}_0 = 0$ implies that aM = 0; and clearly $a \equiv 1 \pmod{\mathfrak{a}}$.

Lemma 5 (Nakayama's lemma). Suppose M is a finitely generated A-module. If J(A)M = 0, then M = 0.

Proof. By the previous corollary there is $a \in A$ such that aM = 0 and $a \equiv 1 \pmod{J(A)}$. So $a \in 1 + J(A) \subseteq A^{\times}$. Therefore aM = 0 implies that M = 0. \Box

PRIMARY IDEALS

We would like to have a general version of prime factorization at least for ideals. It turns out that instead of using powers of primes ideals, we have to work with *primary* ideals.

Definition 6. We say $\mathfrak{q} \leq A$ is a primary ideal if \mathfrak{q} is a proper ideal and $xy \in \mathfrak{q}$ implies that either $x \in \mathfrak{q}$ or $y^n \in \mathfrak{q}$ for some positive integer n.

Lemma 7. Suppose \mathfrak{q} is a proper ideal of A; $\mathfrak{q} \leq A$ is a primary ideal if and only if any zero-divisor of A/\mathfrak{q} is nilpotent.

Proof. (\Rightarrow) Suppose $\overline{x} \in D(A/\mathfrak{q})$ where $D(A/\mathfrak{q})$ is the set of zero-divisors of A/\mathfrak{q} . Then there is $\overline{y} \in A/\mathfrak{q} \setminus \{0\}$ such that $\overline{xy} = 0$; that means $y \notin \mathfrak{q}$ and $xy \in \mathfrak{q}$. Since \mathfrak{q} is primary, we deduce that $x^n \in \mathfrak{q}$ for some positive integer n. Hence $\overline{x}^n = 0$ in A/\mathfrak{q} , which means \overline{x} is nilpotent in A/\mathfrak{q} .

(\Leftarrow) Suppose $xy \in \mathfrak{q}$ and $x \notin \mathfrak{q}$. Then $\overline{xy} = 0$ in A/\mathfrak{q} and $\overline{x} \neq 0$. Hence $\overline{y} \in D(A/\mathfrak{q})$, which implies that there is a positive integer n such that $\overline{y}^n = 0$. Therefore $y^n \in \mathfrak{q}$.

(Here $\overline{z} := z + \mathfrak{q}$ for any $z \in A$.)

Lemma 8. If \mathfrak{q} is primary, then $\sqrt{\mathfrak{q}} = \mathfrak{p}$ is a prime ideal; and so $\sqrt{\mathfrak{q}}$ is the smallest prime divisor of \mathfrak{q} .

Proof. Suppose to the contrary that there are $x, y \in A$ such that $x, y \notin \sqrt{\mathfrak{q}}$ and $xy \in \sqrt{\mathfrak{q}}$. Then for some positive integer $n, (xy)^n \in \mathfrak{q}$ and $x^n \notin \mathfrak{q}$. Since \mathfrak{q} is

4

primary, there is a positive integer m such that $(y^n)^m \in \mathfrak{q}$. This implies that $y \in \sqrt{\mathfrak{q}}$, which is a contradiction.

Since $\mathfrak{p} := \sqrt{\mathfrak{q}} = \bigcap_{\mathfrak{p}' \in V(\mathfrak{q})} \mathfrak{p}'$, we have that $\mathfrak{p} \subseteq \mathfrak{p}'$ for any $\mathfrak{p}' \in V(\mathfrak{q})$. As $\mathfrak{p} \in V(\mathfrak{q})$, we have that \mathfrak{p} is the smallest prime divisor of \mathfrak{q} . \Box

Definition 9. A primary ideal \mathfrak{q} is called \mathfrak{p} -primary if $\sqrt{\mathfrak{q}} = \mathfrak{p}$.

The converse of the above lemma does not hold in general; but if $\sqrt{\mathfrak{q}}$ is a maximal ideal, then we can deduce that \mathfrak{q} is primary.

Lemma 10. If $\mathfrak{m} \in Max(A)$ and $\sqrt{\mathfrak{q}} = \mathfrak{m}$, then \mathfrak{q} is \mathfrak{m} -primary.

Proof. Since $\sqrt{\mathfrak{q}} = \bigcap_{\mathfrak{p} \in V(\mathfrak{q})} \mathfrak{p} = \mathfrak{m}$, we have that $\mathfrak{q} \subseteq \mathfrak{p} \Rightarrow \mathfrak{m} \subseteq \mathfrak{p}$. Since \mathfrak{m} is a maximal ideal, we have $V(\mathfrak{q}) = {\mathfrak{m}}$.

We will continue in the next lecture.