
MATH200C, LECTURE 7

GOLSEFIDY

Localization

We were proving the following:

Lemma 1. Let f : A → S−1A, f(a) := a/1. Then f ∗ induces a bijection between

Spec(S−1A) and {p ∈ Spec(A)| p∩S = ∅}. Moreover if p ∈ Spec(A) and p∩S =

∅, then pec = p.

Proof. (Continue) We have already proved that f ∗ is injective and f ∗(p)∩S = ∅.

We were in the middle of the third step.

Step 3. Suppose p ∈ Spec(A) and p ∩ S = ∅. Then A/p is an integral domain

and S := π(S) does not contain 0, where π : A → A/p, π(a) := a + p. Hence

S
−1
(A/p) can be embedded into the field Q(A/p) of fractions of A/p. Let θ be

the composite A → A/p ↩→ Q(A/p) homomorphism. Then θ(S) ⊆ Q(A/p)×;

hence by the universal property of localization, there is a ring homomorphism
θ : S−1A → Q(A/p), θ(a/s) := π(a)/π(s). Notice that

a/s ∈ ker θ ⇔ π(a)/π(s) = 0 ⇔ π(a) = 0 ⇔ a ∈ p.

Therefore ker θ = S−1p, which implies that S−1A/S−1p can be embedded into

Q(A/p); and so it is either an integral domain or it is zero. Thus either S−1p ∈
Spec(S−1A) or S−1p = S−1A.

Step 4. Suppose p ∈ Spec(A) and p∩S = ∅. We know that pec ⊇ p. If x ∈ pec,

then x/1 ∈ S−1p. Hence there is s ∈ S such that sx ∈ p. As p is prime, either

s ∈ p or x ∈ p. Since p ∩ S = ∅, we deduce that x ∈ p. Thus pec = p. □

Fiber over a prime ideal

Theorem 2. Suppose f : A → B is a ring homomorphism and p ∈ Spec(A). Let

Sp := A \ p, and θ be the composite the following homomorphisms

B
i−→ f(Sp)

−1B
π−→ f(Sp)

−1B/f(Sp)
−1pe.
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Then

(1) θ∗ gives us a bijection between Spec(f(Sp)
−1B/f(Sp)

−1pe) and (f ∗)−1(p).

(2) B ⊗A Q(A/p) ≃ f(Sp)
−1B/f(Sp)

−1pe; and so there is a bijection between

Spec(B ⊗A Q(A/p)) and (f ∗)−1(p).

(3) p ∈ Im(f ∗) if and only if pec = p.

Proof. (1) Notice that θ∗ = i∗ ◦ π∗. We have proved that i∗ induces a bijection

between Spec(f(Sp)
−1B) and

{q ∈ SpecB| q ∩ f(Sp) = ∅} = {q ∈ SpecB| f ∗(q) ⊆ p};

and π∗ induces a bijection between Spec(f(Sp)
−1B/f(Sp)

−1pe) and

V (f(Sp)
−1pe) = {q ∈ Spec(f(Sp)

−1B)| f(Sp)
−1pe ⊆ q}.

We have

q ∈ V (f(Sp)
−1pe) ⇔ ∃!q ∈ SpecB, f ∗(q) ⊆ p,q = f(Sp)

−1q, f(Sp)
−1pe ⊆ f(Sp)

−1q

⇔ ∃!q ∈ SpecB,q = f(Sp)
−1q, f ∗(q) ⊆ p, pe ⊆ q

⇔ ∃!q ∈ SpecB,q = f(Sp)
−1q, f ∗(q) ⊆ p, p ⊆ f ∗(q)

⇔ ∃!q ∈ SpecB,q = f(Sp)
−1q, f ∗(q) = p.

(Notice that pe ⊆ q implies pec ⊆ qc; and so p ⊆ qc. And p ⊆ qc implies

pe ⊆ qce ⊆ q. Hence pe ⊆ q ⇔ p ⊆ qc.) Overall we get the claim.

Part (2) is part of your HW assignment.

(3)

p ∈ Im(f ∗) ⇔(f ∗)−1(p) ∕= ∅

⇔f(Sp)
−1pe ∕= f(Sp)

−1B

⇔pe ∩ f(Sp) = ∅ ⇔ pec ∩ Sp = ∅

⇔pec ⊆ p ⇔ pec = p.

□

Nakayama’s lemma

In math200B you have learned about Nakayama’s lemma. Now we give an

alternative approach which shows a more general result.
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Proposition 3. Suppose M is a finitely generated A-module, φ ∈ EndA(M),

a⊴ A, and φ(M) ⊆ aM . Then

(1) φn + an−1φ
n−1 + · · ·+ a1φ+ a0 = 0

for some ai ∈ a.

Proof. Let R := EndA(M). We know that R is a ring (which is not necessarily

commutative). We have also seen that A → R, a → a, where a(m) := a · m is

a ring homomorphism. Let A := {a| a ∈ A}. Then R := A[φ] is a commutative

subring of R. If carefully written, (1) is an equation in R:

φn + an−1φ
n−1 + · · ·+ a1φ+ a0 = 0.

Suppose M = Am1 + · · · + Amk. Then an element ψ ∈ R is zero if and only if

ψ(mi) = 0 for any i; and so it is enough to show for some aj’s,

(φn + an−1φ
n−1 + · · ·+ a1φ+ a0)(mi) = 0

for any i.

Since φ(M) ⊆ aM , for any i, there are aij ∈ a such that

φ(mi) = ai1m1 + · · ·+ aikmk.

Symbolically these equations can be written as




a11 · · · a1k
...

. . .
...

ak1 · · · akk





  
T





m1

...

mk





  
m

=





φ(m1)
...

φ(mk)



 .

Hence (φI−T )m = 0; multiplying both sides by the adjoint of φI−T in Mk(R),

we get

det(φI − T )m = 0.

This means det(φI −T ) = 0. Notice that xI −T = xI (mod a); and so det(xI −
T ) = xk (mod a). That means there are ai ∈ a such that

det(xI − T ) = xk + ak−1x
k−1 + · · ·+ a0.

Therefore

φk + ak−1φ
k−1 + · · ·+ a0 = 0.

□
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Corollary 4. Suppose M is a finitely generated A-module, a⊴A, and M = aM .

Then there is a ∈ A such that aM = 0 and a ≡ 1 (mod a).

Proof. Suppose ai ∈ a are the ones given by Proposition 3 for φ := IdM . Let

a := 1 +
n−1

i=0 ai. Then IdM + an−1IdM + · · ·+ a0 = 0 implies that aM = 0; and

clearly a ≡ 1 (mod a). □

Lemma 5 (Nakayama’s lemma). Suppose M is a finitely generated A-module. If

J(A)M = 0, then M = 0.

Proof. By the previous corollary there is a ∈ A such that aM = 0 and a ≡ 1

(mod J(A)). So a ∈ 1+ J(A) ⊆ A×. Therefore aM = 0 implies that M = 0. □

Primary ideals

We would like to have a general version of prime factorization at least for ideals.

It turns out that instead of using powers of primes ideals, we have to work with

primary ideals.

Definition 6. We say q⊴A is a primary ideal if q is a proper ideal and xy ∈ q

implies that either x ∈ q or yn ∈ q for some positive integer n.

Lemma 7. Suppose q is a proper ideal of A; q⊴A is a primary ideal if and only

if any zero-divisor of A/q is nilpotent.

Proof. (⇒) Suppose x ∈ D(A/q) where D(A/q) is the set of zero-divisors of A/q.

Then there is y ∈ A/q \ {0} such that xy = 0; that means y ∕∈ q and xy ∈ q.

Since q is primary, we deduce that xn ∈ q for some positive integer n. Hence

xn = 0 in A/q, which means x is nilpotent in A/q.

(⇐) Suppose xy ∈ q and x ∕∈ q. Then xy = 0 in A/q and x ∕= 0. Hence

y ∈ D(A/q), which implies that there is a positive integer n such that yn = 0.

Therefore yn ∈ q.

(Here z := z + q for any z ∈ A.) □

Lemma 8. If q is primary, then
√
q = p is a prime ideal; and so

√
q is the

smallest prime divisor of q.

Proof. Suppose to the contrary that there are x, y ∈ A such that x, y ∕∈ √
q and

xy ∈ √
q. Then for some positive integer n, (xy)n ∈ q and xn ∕∈ q. Since q is
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primary, there is a positive integer m such that (yn)m ∈ q. This implies that

y ∈ √
q, which is a contradiction.

Since p :=
√
q =


p′∈V (q) p

′, we have that p ⊆ p′ for any p′ ∈ V (q). As

p ∈ V (q), we have that p is the smallest prime divisor of q. □

Definition 9. A primary ideal q is called p-primary if
√
q = p.

The converse of the above lemma does not hold in general; but if
√
q is a

maximal ideal, then we can deduce that q is primary.

Lemma 10. If m ∈ Max(A) and
√
q = m, then q is m-primary.

Proof. Since
√
q =


p∈V (q) p = m, we have that q ⊆ p ⇒ m ⊆ p. Since m is a

maximal ideal, we have V (q) = {m}.
We will continue in the next lecture. □


