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BASICS OF PRIMARY IDEALS

In the previous lecture we were proving:
Lemma 1. If m € Max(A) and \/q = m, then q is m-primary.

Proof. Since \/q = ﬂpev(q)p = m, we have that ¢ C p = m C p. Since m is a
maximal ideal, we have V(q) = {m}.

Suppose x ¢ q and xy € q. Consider
(q:2):={a€ Alax € q}.

Then one can check that (q : z) is an ideal of A, ¢ C (q : x) (alternatively
(q : 2)|q), and y € (q : z). Hence V(q : ) C V(q) = {m}; and so either
(q:2)=AorV((q:z)) ={m}. Sincex €q,1 & (q:2). Thus V((q:z)) = {m},
which implies that y € (q : ) € m. This implies that q is primary. O

As it has been mentioned earlier, primary ideals are supposed to play the role
of powers of primes. The next lemma shows that when A is a PID these two

concepts are equivalent.

Lemma 2. Suppose A is a PID. Then q is a non-zero primary ideal of A if and

only if there is a prime element p of A and positive integer n such that q = (p").

Proof. (=) Suppose p := /q. So p € Spec(A) = {0} UMax(A). Notice that
p = 0 if and only if q. If p # 0, then there is an irreducible element p € A such
that p = (p); and in a PID an element is irreducible if and only if it is prime.
Suppose q = (a). Since p is the smallest prime divisor of q, we have that, if ¢ is
prime in A and /|a, then p|¢; this means p is the only prime factor of a. Hence

there is positive integer n such that (a) = (p").
(<) /(p") = (p) € Max(A). Hence by the previous lemma, (p™) is primary.
[l
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As we have seen it the proof of Lemma 1, it is instrumental to understand

(q : z) to have a better understanding of g.
Lemma 3. Suppose q is p-primary. Then

A if x € q,
(q:2) =449 ifz &p,
p-primary if v & q.

Proof. If x € q, then it is clear that (q: x) = A.

Suppose x inp; then y € (q : z) implies that zy € g. Since q is primary, zy € g
and z ¢ q imply that y € \/q = p; this is a contradiction. Therefore (q: z) C q.
And for any ideal q and any element x, we have (q:z) 2 q.

Suppose = ¢ q. First we show that 1/(q : 2) = p. Suppose y € 1/(q: ). Then
for some positive integer n, y"x € q. Since q is a primary ideal, x 4 and xy" € q
imply that, for some positive integer m, (y™*)™ € q. This means y € /g = p.
Hence m C v/q. We always have m 2 41/q; and so \/W =p.

Suppose yz € (q : z) and y & \/W = p. Hence (z2)y € qand y € /4. As
q is primary, we can deduce that zz € q; this means z € (q : ). Therefore (q : z)

is p-primary. 0

PRIMARY DECOMPOSITION

Definition 4. An ideal a is called decomposable if there are finitely many primary
ideals q; such that a = (_, ;.
A decomposition (;_, q; is called reduced if

(1) for any i, a; 2 (\;4 9.
(2) i # /G5 fori # j.

Lemma 5. (1) Suppose q and q' are p-primary; then qNq' is p-primary.

(2) A decomposable ideal has a reduced decomposition.

Proof. (1) Asqnq C q,vqNg C /g =p. If 2 € p, then there are positive
integers n,n’ such that 2" € q and 2™ € ¢’. Hence for any m > max(n,n’),
™ € qNngq;and so z € VqNg. Thus /gNg = p. Suppose zy € q N q" and
r¢\qgNg =p. zy € qand x & p = /q imply that y € q; and similarly zy € ¢’
and z € p = /¢’ imply that y € ¢’. Thus y € N q’; and claim follows.
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(2) We start with a decomposition a = (;_, q;. Using part (1), we can make
sure that /q, # \/ﬁj if i # j. And then we can drop any unnecessary g, if needed,

to end up getting a reduced decomposition. 0

How much is a primary decomposition unique? In your HW assignment you
will see examples of ideals with at least two primary decompositions. That said
some parameters of a reduced primary decomposition of an ideal a just depends

on a.

Theorem 6. Suppose (., q; is a reduced primary decomposition of a, and p; =

V- Then
{p1,...,pn} = Spec(A) N{\/(a:z)|z € A};
in particular {p1,...,pn} just depends on a and it is independent of the choice of

a reduced primary decomposition.

a is decomposable an . q; is a reduced primary decomposition, then
If aisd bl d N, q; i duced pri d iti th
{VU1,---,/Gnt is called the set of primes associated with a; and we write

Ass(a) == {\/d1, ..., /an}-

Proof. We make notice of two things:

(ﬂ b;:x)= ﬂ(bz : x) and

i€l el

Here is their proof:

yE(ﬂbi:x)@xyeﬂbi©Vi€I,xy€bi(i)ViEI,yE(bi:x)ﬁyeﬂbi.

iel icl icl

Since (i, b; C b; for any i, \/[;—,;b: C (i, Vbi; and

ye (Vb =Viye Vo =Vidn €Ly b=y e (b, =ye
=1 =1

Hence

(1)
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By the Lemma 3, 1/(q; : ) = Aif z € q; and /(q; : ©) = p; if © & q;. Hence by
(1) we have

Via:z)= ﬂ pi

wEq;
with the understanding that if € (., q;, then the above intersection is A.
Since q;’s give us a reduced primary decomposition, there is z; € [ 2 4 \ g
Then, by (1), v/(a: 2;) = p;. This means the RHS is a subset of the LHS in the
statement of Theorem.

Suppose y/(a:z) =: p is a prime ideal. Then by (1), p = [, pi- Since p
is prime, ﬂxgqi p; C p implies that for some iy, z;, € q;, and p;, € p. Since
p C ﬂxigqi p; € p;,, we have p C p;,. Altogether, we have p = p,, for some 7.
This implies that the RHS is a subset of the LHS; and claim follows. 0

Proposition 7. Suppose a is decomposable. Then
(1) Ass(a) C V(a).
(2) For any p € V(a), there is p’ € Ass(a) such that p’ C p.
(8) The set of minimal elements of Ass(a) with respect to inclusion is the

same as the set of minimal elements of V(a) with respect to inclusion.

We deduce that, if a is decomposable, then V' (a) has only finitely many min-
imal elements. We will prove later that if A is Noetherian, then any ideal is
decomposable. This is similar to how we used a chain condition to prove that
any element can be written as a product of irreducible elements in a Noetherian

integral domian.

Proof. (1) Suppose [, ¢; is a reduced primary decomposition of a and p; := /q;.
Then a C q; C p; for any 4; and so p; € V(a).
(2) For any p € V(a), we have (_;q; € p. Hence /[, q; € /p which

implies
n

(e = vaice.
i=1 i=1
Since p is prime, we have that p; C p for some .

(3) Suppose p is a minimal element of V(a). By (2), there is p’ € Ass(a) such
that p’ C p. As Ass(a) € V(a) and p is minimal in V' (a), p’ C p implies that
p = p’. Since p is minimal in V(a), Ass(a) C V(a), and pfr € Ass(A), p is

minimal in Ass(A). Hence
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minimal in V' (a) implies minimal in Ass(a).

Suppose p is minimal in Ass(a). And suppose to the contrary that p is not
minimal in V'(a). Then there is p € V(a) such that p C p. By part (2), there is
p’ € Ass(a) such that p’ Cp. Thus

PepPSp
but p’,p € Ass(a) and p’ C p contradict that p is minimal in Ass(a). Therefore
minimal in V(a) implies minimal in V' (a);
and claim follows. O

Proposition 8. Suppose a is decomposable. Then

U p={z e Al (a:x)+#a}.
pEAss(a)
Notice that {z € A| (0: z) # 0} = D(A) is the set of zero-divisors of A. And
so the above proposition implies D(A) = (J,cp0) P if O is decomposable.

Proof. Suppose (., g; is a reduced primary decomposition of a. Then for any ,
(a:z) =(r,(q; : ). Soif (a:z) # a, then for some i we have that (q; : ) # q;.
Therefore, by Lemma 3, x € p;. Hence the RHS is a subset of the LHS.

Suppose = € p; for some i. Then by Theorem 6, there is y € A such that
p; = m Sox € \/W; hence for some positive integer n, 2" € (a : y),
which implies that 2™y € a.

Now suppose to the contrary that (a : ) = a. In this case, we claim that
y € a. To show this suppose i is the smallest non-negative integer such that
'y € a. If 1 = 0, we get the claim. If 4 > 0, then z(2'"'y) € a implies that
271y € (a: x) = a; and this contradicts the minimality of i. Hence y € a, which
implies that (a : y) = A; but this contradicts that y/(a : y) is prime. Therefore
(a:z) # a, which means the LHR is a subset of the RHS. O



