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In the previous lecture we proved:

Proposition 1. Suppose a is decomposable. Then⋃
p∈Ass(a)

p = {x ∈ A| (a : x) 6= a}.

We have also pointed out the connection with zero-divisors; let’s add a bit to

this connection:

Corollary 2. D(A) =
⋃

p∈Ass(0) p and Nil(A) =
⋂

p∈Ass(0) p.

Proof. Notice that x ∈ D(A) if and only if (0 : x) 6= 0; and so D(A) =
⋂

p∈Ass(0) p,

by the previous proposition.

Since 0 is decomposable, for any p ∈ Spec(A), there is p′ ∈ Ass(0) such that

p′ ⊆ p. Hence
⋂

p′∈Ass(0) p
′ ⊆ p for any p ∈ Spec(A); this implies that⋂

p′∈Ass(0)

p′ ⊆
⋂

p∈Spec(A)

p = Nil(A).

Clearly Nil(A) =
⋂

p∈Spec(A) p ⊆
⋂

p′∈Ass(0) p
′; and claim follows. �

Localization and primary ideals

Suppose S is a multiplicatively closed subset of A; and let f : A → S−1A,

f(a) := a/1. We have proved that any ideal of S−1A is an extended ideal; and

so ãce = ã. Not any ideal of A is a contracted ideal. Now let S(a) := aec. Recall

that

Lemma 3. (1) S(a) ⊇ a for any aE A.

(2) S−1S(a) = S−1a.

(3) S(p) = p if p ∈ Spec(A) and p ∩ S = ∅.

Proof. (1) S(a) = aec ⊇ a. (2) S−1(S(a)) = aece = ae = S−1a. (3) We have

proved earlier. �
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Let us have a better understanding of S(a):

Lemma 4. S(a) =
⋃
s∈S(a : s).

Proof.

a ∈ S(a)⇔a

1
∈ S−1a⇔ ∃s′ ∈ S, a′ ∈ a,

a

1
=

a′

s′
,

⇔∃s′′ ∈ S, s′′(s′a− a′) = 0⇔ (s′′s′)︸ ︷︷ ︸
s

a = s′′a′ ∈ a

⇒∃s ∈ S, sa ∈ a⇒ a ∈
⋃
s∈S

(a : s).

a ∈
⋃
s∈S

(a : s)⇒∃s ∈ S, sa ∈ a⇒ a

1
=

sa

s
∈ S−1a

⇒a ∈ S(a);

and claim follows. �

Proposition 5. (1) If q is p-primary and p ∩ S 6= ∅, then S−1q = S−1A.

(2) If q is p-primary and p ∩ S = ∅, then S(q) = q.

(3) If q is p-primary and p ∩ S = ∅, then S−1q is S−1p-primary.

(4) Suppose p ∈ Spec(A) and p ∩ S. Then extension and contraction maps

induce bijections between

{qE A| q is p-primary} and {q̃E S−1A| q̃ is S−1p-primary}.

Proof. (1) If a ∈ p ∩ S, then for some positive integer n, an ∈ q ∩ S; and so

S−1q = S−1A.

(2) Suppose a ∈ S(q); then there is s ∈ S such that sa ∈ q. Since S ∩ p = ∅,

s 6∈ p. As q is p-primary, sa ∈ q, and s 6∈ p, we deduce that a ∈ q.

(3) First we show that
√
S−1q = S−1p.

a

s
∈
√

S−1q⇒∃n ∈ Z+,
(a
s

)n
∈ S−1q,⇒

(a
1

)n
∈ S−1q,

⇒an ∈ S(q) = q⇒ a ∈
√
q = p

⇒a

s
∈ S−1p.
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And

a

s
∈ S−1p⇒a

1
∈ S−1p⇒ a ∈ S(p) = p

⇒∃n ∈ Z+, an ∈ q⇒ a

s
∈
√
S−1q.

Next we show S−1q is primary; we have already proved that it is proper. Suppose
a
s
· a′
s′
∈ S−1q and a′

s′
6∈
√
S−1q = S−1p. Then for some s′′ ∈ S, we have s′′aa′ ∈ q

and a′ 6∈ p. Since S ∩ p = ∅, s′′ ∈ S, a′ 6∈ p, and p is prime, we deduce that

s′′a′ 6∈ p. Since q is p-primary, s′′a′ 6∈ p, and (s′′a′)a ∈ q, we have a ∈ q. Thus
a
s
∈ S−1q.

(4) To show this part, it remains to show q := q̃c is p-primary if q̃ is S−1p-

primary. First we show that
√
q = p.

Suppose a ∈ √q; then for some positive integer n, an ∈ q, which means an

1
∈ q̃.

Hence a
1
∈
√

q̃ = S−1p. Therefore a ∈ S(p) = p. If b ∈ p, then b
1
∈ S−1p. Hence

for some positive integer n, bn

1
∈ q̃, which implies that bn ∈ q. Thus b ∈ √q.

Next we show that q is primary. We have already showed that it is proper.

Suppose xy ∈ q and y 6∈ √q = p. Then x
1
· y

1
∈ q̃ and y

1
6∈ S−1p (as S(p) = p). As

q̃ is primary, we deduce that x
1
∈ q̃. Hence x ∈ q. �

Localization and primary decomposition

Lemma 6. Suppose
⋂n
i=1 qi is a reduced primary decomposition of a, qi is pi-

primary, and S ∩ pi = ∅ if and only if 1 ≤ i ≤ m. Then

(1) S−1a =
⋂m
i=1 S

−1qi;

(2) S(a) =
⋂m
i=1 qi.

Proof. For any i, ai ⊆ qi; and so S−1a ⊆ S−1qi and S(a) ⊆ S(qi). Therefore

S−1a ⊆
n⋂
i=1

S−1qi and S(a) ⊆
n⋂
i=1

S(qi).

By the previous lemma, S−1qi = S−1A and S(qi) = A if i > m, and S(qi) = qi if

1 ≤ i ≤ m; hence

S−1a ⊆
m⋂
i=1

S−1qi and S(a) ⊆
m⋂
i=1

qi.

Suppose a
s
∈
⋂m
i=1 S

−1qi; then a
1
∈
⋂m
i=1 S

−1qi. Hence a ∈
⋂m
i=1 S(qi) =

⋂m
i=1 qi.

For i > m, let si ∈ S ∩ qi; set s′ :=
∏

i>m si. Then s′a ∈
⋂n
i=1 qi = a and
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s′ ∈ S. Therefore a
s

= s′a
s′s
∈ S−1a. This implies that S−1a =

⋂m
i=1 S

−1qi. After

contraction we get

S(a) =
m⋂
i=1

S(qi) =
m⋂
i=1

qi.

�

The second uniqueness theorem

Definition 7. Suppose a is decomposable. A subset Σ of Ass(a) is called isolated

if Σ is not empty and

(p ∈ Σ, p′ ∈ Ass(a), p′ ⊆ p)⇒ p′ ∈ Σ.

An important example is the following: suppose p is a minimal element of

Ass(a); then {p} is isolated.

Theorem 8. Suppose a is decomposable and Σ ⊆ Ass(a) is isolated. Suppose⋂n
i=1 qi is a reduced primary decomposition. Then

⋂
√
qi∈Σ qi just depends on a and

Σ and it is independent of the choice of a primary decomposition. In particular,

if p is a minimal element of Ass(a), then there is a p-primary ideal q that appears

in all the reduced primary decompositions of a.

Proof. We want to use a suitable localization and use the previous lemma. So we

need to find a multiplicatively closed set SΣ such that SΣ(a) becomes
⋂

pi∈Σ qi

where pi :=
√
qi. By the previous lemma, SΣ(a) =

⋂
pi∩Sσ=∅ qi. So we have to

find SΣ in a way that

SΣ ∩ pi = ∅⇔ pi ∈ Σ.

This suggests that we let SΣ := A \
⋂

p∈Σ p.

Claim 1. Sσ := A \
⋂

p∈Σ p is multiplicatively closed.

Proof of Claim 1. Suppose s1, s2 ∈ SΣ and s1s2 6∈ SΣ; then s1s2 ∈ p for some

p ∈ Σ. Since p is prime, either s1 ∈ p or s2 ∈ p. Hence either s1 6∈ SΣ or s2 6∈ SΣ;

this is a contradiction.

Claim 2. SΣ ∩ pi = ∅⇔ pi ∈ Σ.

Proof of Claim 2. If pi ∈ Σ, then we have that SΣ ∩ pi = ∅, by definition of

SΣ. Next suppose pi ∩ SΣ = ∅; then

pi ⊆
⋃
p∈Σ

p.



MATH200C, LECTURE 9 5

By a result that we have proved earlier (and you have proved its generalization,

McCoy’s result), we have that pi ⊆ p for some p ∈ Σ. Since Σ is isolated, we

deduce that pi ∈ Σ.

Overall we get SΣ(a) =
⋂

pi∈Σ qi. Hence this intersection just depends on a and

Σ and it is independent of the choice of a reduced primary factorization. �

Krull dimension one integral domains

Definition 9. The Krull dimension of a ring A is defined to be

dimA := sup{n ∈ Z≥0| ∃pi ∈ Spec(A), p0 ( · · · ( pn}.

Example 10. Suppose D is an integral domain; then dimD = 0 if and only if

D is a field.

Proof. (⇒) Suppose to the contrary that D is not a field. So there is d ∈ D \
D× ∪ {0}; this means 〈d〉 is a non-zero proper ideal of D. So there is a non-zero

maximal ideal m of D (that contains d). This means dimD ≥ 1 as 0 ( m is a

chain of prime ideals of D; and this is a contradiction.

(⇐) Since D is a field, its only proper ideal is 0; and claim follows. �

Example 11. Suppose D is an integral domain which is not a field. Then

dimD = 1 if and only if Spec(D) = {0} ∪Max(D).

Proof. (⇒) Suppose p is a non-zero prime ideal, and m is a maximal ideal of D

that contains p as a subset. Then 0 ( p ⊆ m is a chain of prime ideals. As

dimD = 1, we deduce that p = m, which means p is a maximal ideal.

(⇐) Since Spec(D) = {0} ∪ Max(D), any non-zero prime ideal is maximal.

This means we cannot have a chain of prime ideals that have length two (that

means there are no prime ideals such that 0 ( p1 ( p2 as p1 is maximal). Thus

dimD ≤ 1. By the previous example and the assumption that D is not a field,

we deduce that dimD 6= 0. Hence dimD = 1. �

Proposition 12. Suppose D is an integral domain of Krull dimension 1; then

any decomposable ideal has a unique primary decomposition.

Proof. Notice that 0 is a reduced primary decomposition of 0; hence Ass(0) = {0}.
Since 0 is minimal in Ass(0), 0 is the only reduced primary decomposition of 0.
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Suppose a is a non-zero decomposable ideal. Then 0 6∈ Ass(a). By the previous

lemma, we deduce that Ass(a) ⊆ Max(A). This implies that any element of

Ass(a) is minimal in Ass(a) (one maximal ideal cannot be a subset of another

maximal ideal). Hence for any p ∈ Ass(a), there is a p-primary ideal qp that

appears in all the reduced primary decompositions of a. Hence
⋂

p∈Ass(a) qp is the

unique reduced primary decomposition of a. �
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