MATH200C, LECTURE 9

GOLSEFIDY

In the previous lecture we proved:
Proposition 1. Suppose \mathfrak{a} is decomposable. Then

$$
\bigcup_{\mathfrak{p} \in \operatorname{Ass}(\mathfrak{a})} \mathfrak{p}=\{x \in A \mid(\mathfrak{a}: x) \neq \mathfrak{a}\} .
$$

We have also pointed out the connection with zero-divisors; let's add a bit to this connection:

Corollary 2. $D(A)=\bigcup_{\mathfrak{p} \in \operatorname{Ass}(0)} \mathfrak{p}$ and $\operatorname{Nil}(A)=\bigcap_{\mathfrak{p} \in \operatorname{Ass}(0)} \mathfrak{p}$.
Proof. Notice that $x \in D(A)$ if and only if $(0: x) \neq 0$; and so $D(A)=\bigcap_{\mathfrak{p} \in \operatorname{Ass}(0)} \mathfrak{p}$, by the previous proposition.

Since 0 is decomposable, for any $\mathfrak{p} \in \operatorname{Spec}(A)$, there is $\mathfrak{p}^{\prime} \in \operatorname{Ass}(0)$ such that $\mathfrak{p}^{\prime} \subseteq \mathfrak{p}$. Hence $\bigcap_{\mathfrak{p}^{\prime} \in \operatorname{Ass}(0)} \mathfrak{p}^{\prime} \subseteq \mathfrak{p}$ for any $\mathfrak{p} \in \operatorname{Spec}(A)$; this implies that

$$
\bigcap_{\mathfrak{p}^{\prime} \in \operatorname{Ass}(0)} \mathfrak{p}^{\prime} \subseteq \bigcap_{\mathfrak{p} \in \operatorname{Spec}(A)} \mathfrak{p}=\operatorname{Nil}(A) .
$$

Clearly $\operatorname{Nil}(A)=\bigcap_{\mathfrak{p} \in \operatorname{Spec}(A)} \mathfrak{p} \subseteq \bigcap_{\mathfrak{p}^{\prime} \in \operatorname{Ass}(0)} \mathfrak{p}^{\prime} ;$ and claim follows.
Localization and primary ideals
Suppose S is a multiplicatively closed subset of A; and let $f: A \rightarrow S^{-1} A$, $f(a):=a / 1$. We have proved that any ideal of $S^{-1} A$ is an extended ideal; and so $\widetilde{\mathfrak{a}}^{c e}=\widetilde{\mathfrak{a}}$. Not any ideal of A is a contracted ideal. Now let $S(\mathfrak{a}):=\mathfrak{a}^{e c}$. Recall that

Lemma 3. (1) $S(\mathfrak{a}) \supseteq \mathfrak{a}$ for any $\mathfrak{a} \unlhd A$.
(2) $S^{-1} S(\mathfrak{a})=S^{-1} \mathfrak{a}$.
(3) $S(\mathfrak{p})=\mathfrak{p}$ if $\mathfrak{p} \in \operatorname{Spec}(A)$ and $\mathfrak{p} \cap S=\varnothing$.

Proof. (1) $S(\mathfrak{a})=\mathfrak{a}^{e c} \supseteq \mathfrak{a}$. (2) $S^{-1}(S(\mathfrak{a}))=\mathfrak{a}^{e c e}=\mathfrak{a}^{e}=S^{-1} \mathfrak{a}$. (3) We have proved earlier.

Let us have a better understanding of $S(\mathfrak{a})$:
Lemma 4. $S(\mathfrak{a})=\bigcup_{s \in S}(\mathfrak{a}: s)$.
Proof.

$$
\begin{aligned}
& a \in S(\mathfrak{a}) \Leftrightarrow \frac{a}{1} \in S^{-1} \mathfrak{a} \Leftrightarrow \exists s^{\prime} \in S, a^{\prime} \in \mathfrak{a}, \frac{a}{1}=\frac{a^{\prime}}{s^{\prime}} \\
& \Leftrightarrow \exists s^{\prime \prime} \in S, s^{\prime \prime}\left(s^{\prime} a-a^{\prime}\right)=0 \Leftrightarrow \underbrace{\left(s^{\prime \prime} s^{\prime}\right)}_{s} a=s^{\prime \prime} a^{\prime} \in \mathfrak{a} \\
& \Rightarrow \exists s \in S, s a \in \mathfrak{a} \Rightarrow a \in \bigcup_{s \in S}(\mathfrak{a}: s) . \\
& a \in \bigcup_{s \in S}(\mathfrak{a}: s) \Rightarrow \exists s \in S, s a \in \mathfrak{a} \Rightarrow \frac{a}{1}=\frac{s a}{s} \in S^{-1} \mathfrak{a} \\
& \Rightarrow a \in S(\mathfrak{a}) ;
\end{aligned}
$$

and claim follows.
Proposition 5. (1) If \mathfrak{q} is \mathfrak{p}-primary and $\mathfrak{p} \cap S \neq \varnothing$, then $S^{-1} \mathfrak{q}=S^{-1} A$.
(2) If \mathfrak{q} is \mathfrak{p}-primary and $\mathfrak{p} \cap S=\varnothing$, then $S(\mathfrak{q})=\mathfrak{q}$.
(3) If \mathfrak{q} is \mathfrak{p}-primary and $\mathfrak{p} \cap S=\varnothing$, then $S^{-1} \mathfrak{q}$ is $S^{-1} \mathfrak{p}$-primary.
(4) Suppose $\mathfrak{p} \in \operatorname{Spec}(A)$ and $\mathfrak{p} \cap S$. Then extension and contraction maps induce bijections between
$\{\mathfrak{q} \unlhd A \mid \mathfrak{q}$ is \mathfrak{p}-primary $\}$ and $\left\{\widetilde{\mathfrak{q}} \unlhd S^{-1} A \mid \widetilde{\mathfrak{q}}\right.$ is $S^{-1} \mathfrak{p}$-primary $\}$.
Proof. (1) If $a \in \mathfrak{p} \cap S$, then for some positive integer n, $a^{n} \in \mathfrak{q} \cap S$; and so $S^{-1} \mathfrak{q}=S^{-1} A$.
(2) Suppose $a \in S(\mathfrak{q})$; then there is $s \in S$ such that $s a \in \mathfrak{q}$. Since $S \cap \mathfrak{p}=\varnothing$, $s \notin \mathfrak{p}$. As \mathfrak{q} is \mathfrak{p}-primary, $s a \in \mathfrak{q}$, and $s \notin \mathfrak{p}$, we deduce that $a \in \mathfrak{q}$.
(3) First we show that $\sqrt{S^{-1} \mathfrak{q}}=S^{-1} \mathfrak{p}$.

$$
\begin{aligned}
\frac{a}{s} \in \sqrt{S^{-1} \mathfrak{q}} & \Rightarrow \exists n \in \mathbb{Z}^{+},\left(\frac{a}{s}\right)^{n} \in S^{-1} \mathfrak{q}, \Rightarrow\left(\frac{a}{1}\right)^{n} \in S^{-1} \mathfrak{q} \\
& \Rightarrow a^{n} \in S(\mathfrak{q})=\mathfrak{q} \Rightarrow a \in \sqrt{\mathfrak{q}}=\mathfrak{p} \\
& \Rightarrow \frac{a}{s} \in S^{-1} \mathfrak{p}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{a}{s} \in S^{-1} \mathfrak{p} & \Rightarrow \frac{a}{1} \in S^{-1} \mathfrak{p} \Rightarrow a \in S(\mathfrak{p})=\mathfrak{p} \\
& \Rightarrow \exists n \in \mathbb{Z}^{+}, a^{n} \in \mathfrak{q} \Rightarrow \frac{a}{s} \in \sqrt{S^{-1} \mathfrak{q}}
\end{aligned}
$$

Next we show $S^{-1} \mathfrak{q}$ is primary; we have already proved that it is proper. Suppose $\frac{a}{s} \cdot \frac{a^{\prime}}{s^{\prime}} \in S^{-1} \mathfrak{q}$ and $\frac{a^{\prime}}{s^{\prime}} \notin \sqrt{S^{-1} \mathfrak{q}}=S^{-1} \mathfrak{p}$. Then for some $s^{\prime \prime} \in S$, we have $s^{\prime \prime} a a^{\prime} \in \mathfrak{q}$ and $a^{\prime} \notin \mathfrak{p}$. Since $S \cap \mathfrak{p}=\varnothing, s^{\prime \prime} \in S, a^{\prime} \notin \mathfrak{p}$, and \mathfrak{p} is prime, we deduce that $s^{\prime \prime} a^{\prime} \notin \mathfrak{p}$. Since \mathfrak{q} is \mathfrak{p}-primary, $s^{\prime \prime} a^{\prime} \notin \mathfrak{p}$, and $\left(s^{\prime \prime} a^{\prime}\right) a \in \mathfrak{q}$, we have $a \in \mathfrak{q}$. Thus $\frac{a}{s} \in S^{-1} \mathfrak{q}$.
(4) To show this part, it remains to show $\mathfrak{q}:=\widetilde{\mathfrak{q}}^{c}$ is \mathfrak{p}-primary if $\widetilde{\mathfrak{q}}$ is $S^{-1} \mathfrak{p}$ primary. First we show that $\sqrt{\mathfrak{q}}=\mathfrak{p}$.

Suppose $a \in \sqrt{\mathfrak{q}}$; then for some positive integer $n, a^{n} \in \mathfrak{q}$, which means $\frac{a^{n}}{1} \in \widetilde{\mathfrak{q}}$. Hence $\frac{a}{1} \in \sqrt{\mathfrak{q}}=S^{-1} \mathfrak{p}$. Therefore $a \in S(\mathfrak{p})=\mathfrak{p}$. If $b \in \mathfrak{p}$, then $\frac{b}{1} \in S^{-1} \mathfrak{p}$. Hence for some positive integer $n, \frac{b^{n}}{1} \in \widetilde{\mathfrak{q}}$, which implies that $b^{n} \in \mathfrak{q}$. Thus $b \in \sqrt{\mathfrak{q}}$.

Next we show that \mathfrak{q} is primary. We have already showed that it is proper. Suppose $x y \in \mathfrak{q}$ and $y \notin \sqrt{\mathfrak{q}}=\mathfrak{p}$. Then $\frac{x}{1} \cdot \frac{y}{1} \in \widetilde{\mathfrak{q}}$ and $\frac{y}{1} \notin S^{-1} \mathfrak{p}$ (as $S(\mathfrak{p})=\mathfrak{p}$). As $\widetilde{\mathfrak{q}}$ is primary, we deduce that $\frac{x}{1} \in \widetilde{\mathfrak{q}}$. Hence $x \in \mathfrak{q}$.

LOCALIZATION AND PRIMARY DECOMPOSITION

Lemma 6. Suppose $\bigcap_{i=1}^{n} \mathfrak{q}_{i}$ is a reduced primary decomposition of \mathfrak{a}, \mathfrak{q}_{i} is \mathfrak{p}_{i} primary, and $S \cap \mathfrak{p}_{i}=\varnothing$ if and only if $1 \leq i \leq m$. Then
(1) $S^{-1} \mathfrak{a}=\bigcap_{i=1}^{m} S^{-1} \mathfrak{q}_{i}$;
(2) $S(\mathfrak{a})=\bigcap_{i=1}^{m} \mathfrak{q}_{i}$.

Proof. For any $i, \mathfrak{a}_{i} \subseteq \mathfrak{q}_{i}$; and so $S^{-1} \mathfrak{a} \subseteq S^{-1} \mathfrak{q}_{i}$ and $S(\mathfrak{a}) \subseteq S\left(\mathfrak{q}_{i}\right)$. Therefore

$$
S^{-1} \mathfrak{a} \subseteq \bigcap_{i=1}^{n} S^{-1} \mathfrak{q}_{i} \text { and } S(\mathfrak{a}) \subseteq \bigcap_{i=1}^{n} S\left(\mathfrak{q}_{i}\right) .
$$

By the previous lemma, $S^{-1} \mathfrak{q}_{i}=S^{-1} A$ and $S\left(\mathfrak{q}_{i}\right)=A$ if $i>m$, and $S\left(\mathfrak{q}_{i}\right)=\mathfrak{q}_{i}$ if $1 \leq i \leq m$; hence

$$
S^{-1} \mathfrak{a} \subseteq \bigcap_{i=1}^{m} S^{-1} \mathfrak{q}_{i} \text { and } S(\mathfrak{a}) \subseteq \bigcap_{i=1}^{m} \mathfrak{q}_{i} .
$$

Suppose $\frac{a}{s} \in \bigcap_{i=1}^{m} S^{-1} \mathfrak{q}_{i}$; then $\frac{a}{1} \in \bigcap_{i=1}^{m} S^{-1} \mathfrak{q}_{i}$. Hence $a \in \bigcap_{i=1}^{m} S\left(\mathfrak{q}_{i}\right)=\bigcap_{i=1}^{m} \mathfrak{q}_{i}$. For $i>m$, let $s_{i} \in S \cap \mathfrak{q}_{i}$; set $s^{\prime}:=\prod_{i>m} s_{i}$. Then $s^{\prime} a \in \bigcap_{i=1}^{n} \mathfrak{q}_{i}=\mathfrak{a}$ and
$s^{\prime} \in S$. Therefore $\frac{a}{s}=\frac{s^{\prime} a}{s^{\prime} s} \in S^{-1} \mathfrak{a}$. This implies that $S^{-1} \mathfrak{a}=\bigcap_{i=1}^{m} S^{-1} \mathfrak{q}_{i}$. After contraction we get

$$
S(\mathfrak{a})=\bigcap_{i=1}^{m} S\left(\mathfrak{q}_{i}\right)=\bigcap_{i=1}^{m} \mathfrak{q}_{i} .
$$

The second uniqueness theorem

Definition 7. Suppose \mathfrak{a} is decomposable. A subset Σ of $\operatorname{Ass}(\mathfrak{a})$ is called isolated if Σ is not empty and

$$
\left(\mathfrak{p} \in \Sigma, \mathfrak{p}^{\prime} \in \operatorname{Ass}(\mathfrak{a}), \mathfrak{p}^{\prime} \subseteq \mathfrak{p}\right) \Rightarrow \mathfrak{p}^{\prime} \in \Sigma
$$

An important example is the following: suppose \mathfrak{p} is a minimal element of $\operatorname{Ass}(\mathfrak{a})$; then $\{\mathfrak{p}\}$ is isolated.

Theorem 8. Suppose \mathfrak{a} is decomposable and $\Sigma \subseteq \operatorname{Ass}(\mathfrak{a})$ is isolated. Suppose $\bigcap_{i=1}^{n} \mathfrak{q}_{i}$ is a reduced primary decomposition. Then $\bigcap_{\sqrt{\mathfrak{q}_{i} \in \Sigma}} \mathfrak{q}_{i}$ just depends on \mathfrak{a} and Σ and it is independent of the choice of a primary decomposition. In particular, if \mathfrak{p} is a minimal element of $\operatorname{Ass}(\mathfrak{a})$, then there is a \mathfrak{p}-primary ideal \mathfrak{q} that appears in all the reduced primary decompositions of \mathfrak{a}.

Proof. We want to use a suitable localization and use the previous lemma. So we need to find a multiplicatively closed set S_{Σ} such that $S_{\Sigma}(\mathfrak{a})$ becomes $\bigcap_{\mathfrak{p}_{i} \in \Sigma} \mathfrak{q}_{i}$ where $\mathfrak{p}_{i}:=\sqrt{\mathfrak{q}_{i}}$. By the previous lemma, $S_{\Sigma}(\mathfrak{a})=\bigcap_{\mathfrak{p}_{i} \cap S_{\sigma}=\varnothing} \mathfrak{q}_{i}$. So we have to find S_{Σ} in a way that

$$
S_{\Sigma} \cap \mathfrak{p}_{i}=\varnothing \Leftrightarrow \mathfrak{p}_{i} \in \Sigma
$$

This suggests that we let $S_{\Sigma}:=A \backslash \bigcap_{\mathfrak{p} \in \Sigma} \mathfrak{p}$.
Claim 1. $S_{\sigma}:=A \backslash \bigcap_{\mathfrak{p} \in \Sigma} \mathfrak{p}$ is multiplicatively closed.
Proof of Claim 1. Suppose $s_{1}, s_{2} \in S_{\Sigma}$ and $s_{1} s_{2} \notin S_{\Sigma}$; then $s_{1} s_{2} \in \mathfrak{p}$ for some $\mathfrak{p} \in \Sigma$. Since \mathfrak{p} is prime, either $s_{1} \in \mathfrak{p}$ or $s_{2} \in \mathfrak{p}$. Hence either $s_{1} \notin S_{\Sigma}$ or $s_{2} \notin S_{\Sigma}$; this is a contradiction.

Claim 2. $S_{\Sigma} \cap \mathfrak{p}_{i}=\varnothing \Leftrightarrow \mathfrak{p}_{i} \in \Sigma$.
Proof of Claim 2. If $\mathfrak{p}_{i} \in \Sigma$, then we have that $S_{\Sigma} \cap \mathfrak{p}_{i}=\varnothing$, by definition of S_{Σ}. Next suppose $\mathfrak{p}_{i} \cap S_{\Sigma}=\varnothing$; then

$$
\mathfrak{p}_{i} \subseteq \bigcup_{\mathfrak{p} \in \Sigma} \mathfrak{p}
$$

By a result that we have proved earlier (and you have proved its generalization, McCoy's result), we have that $\mathfrak{p}_{i} \subseteq \mathfrak{p}$ for some $\mathfrak{p} \in \Sigma$. Since Σ is isolated, we deduce that $\mathfrak{p}_{i} \in \Sigma$.

Overall we get $S_{\Sigma}(\mathfrak{a})=\bigcap_{\mathfrak{p}_{i} \in \Sigma} \mathfrak{q}_{i}$. Hence this intersection just depends on \mathfrak{a} and Σ and it is independent of the choice of a reduced primary factorization.

Krull dimension one integral domains

Definition 9. The Krull dimension of a ring A is defined to be

$$
\operatorname{dim} A:=\sup \left\{n \in \mathbb{Z}^{\geq 0} \mid \exists \mathfrak{p}_{i} \in \operatorname{Spec}(A), \mathfrak{p}_{0} \subsetneq \cdots \subsetneq \mathfrak{p}_{n}\right\} .
$$

Example 10. Suppose D is an integral domain; then $\operatorname{dim} D=0$ if and only if D is a field.

Proof. (\Rightarrow) Suppose to the contrary that D is not a field. So there is $d \in D \backslash$ $D^{\times} \cup\{0\}$; this means $\langle d\rangle$ is a non-zero proper ideal of D. So there is a non-zero maximal ideal \mathfrak{m} of D (that contains d). This means $\operatorname{dim} D \geq 1$ as $0 \subsetneq \mathfrak{m}$ is a chain of prime ideals of D; and this is a contradiction.
(\Leftarrow) Since D is a field, its only proper ideal is 0 ; and claim follows.
Example 11. Suppose D is an integral domain which is not a field. Then $\operatorname{dim} D=1$ if and only if $\operatorname{Spec}(D)=\{0\} \cup \operatorname{Max}(D)$.

Proof. (\Rightarrow) Suppose \mathfrak{p} is a non-zero prime ideal, and \mathfrak{m} is a maximal ideal of D that contains \mathfrak{p} as a subset. Then $0 \subsetneq \mathfrak{p} \subseteq \mathfrak{m}$ is a chain of prime ideals. As $\operatorname{dim} D=1$, we deduce that $\mathfrak{p}=\mathfrak{m}$, which means \mathfrak{p} is a maximal ideal.
(\Leftarrow) Since $\operatorname{Spec}(D)=\{0\} \cup \operatorname{Max}(D)$, any non-zero prime ideal is maximal. This means we cannot have a chain of prime ideals that have length two (that means there are no prime ideals such that $0 \subsetneq \mathfrak{p}_{1} \subsetneq \mathfrak{p}_{2}$ as \mathfrak{p}_{1} is maximal). Thus $\operatorname{dim} D \leq 1$. By the previous example and the assumption that D is not a field, we deduce that $\operatorname{dim} D \neq 0$. Hence $\operatorname{dim} D=1$.

Proposition 12. Suppose D is an integral domain of Krull dimension 1; then any decomposable ideal has a unique primary decomposition.

Proof. Notice that 0 is a reduced primary decomposition of 0 ; hence $\operatorname{Ass}(0)=\{0\}$. Since 0 is minimal in Ass(0), 0 is the only reduced primary decomposition of 0 .

Suppose \mathfrak{a} is a non-zero decomposable ideal. Then $0 \notin \operatorname{Ass}(\mathfrak{a})$. By the previous lemma, we deduce that $\operatorname{Ass}(\mathfrak{a}) \subseteq \operatorname{Max}(A)$. This implies that any element of $\operatorname{Ass}(\mathfrak{a})$ is minimal in $\operatorname{Ass}(\mathfrak{a})$ (one maximal ideal cannot be a subset of another maximal ideal). Hence for any $\mathfrak{p} \in \operatorname{Ass}(\mathfrak{a})$, there is a \mathfrak{p}-primary ideal $\mathfrak{q}_{\mathfrak{p}}$ that appears in all the reduced primary decompositions of \mathfrak{a}. Hence $\bigcap_{\mathfrak{p} \in \operatorname{Ass}(\mathfrak{a})} \mathfrak{q}_{\mathfrak{p}}$ is the unique reduced primary decomposition of \mathfrak{a}.

