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In the previous lecture we proved:

Proposition 1. Suppose a is decomposable. Then
U p={zr e A (a:x)+#a}.
peAss(a)

We have also pointed out the connection with zero-divisors; let’s add a bit to

this connection:

COI‘Ollary 2. D(A) = UpGASS(O) p and NII(A) = ﬂpGASS(O) p

Proof. Notice that « € D(A) if and only if (0 : ) # 0; and so D(A) = (,caxs(0) P
by the previous proposition.

Since 0 is decomposable, for any p € Spec(A), there is p’ € Ass(0) such that
p’ C p. Hence (ycpg(o) P’ € b for any p € Spec(A); this implies that

(1 < () p=Ni4
p’€Ass(0) peSpec(A)

Clearly Nil(4) = Myespec(a) P S MNyeassio) P’ and claim follows. O

LOCALIZATION AND PRIMARY IDEALS

Suppose S is a multiplicatively closed subset of A; and let f : A — S™1A,
f(a) := a/1. We have proved that any ideal of S™'A is an extended ideal; and
so a° = a. Not any ideal of A is a contracted ideal. Now let S(a) := a*“. Recall
that

Lemma 3. (1) S(a) 2 a for any a < A.
(2) S15(a) = 57
(3) S(p) =p if

Proof. (1) S(a) = a*® D a. (2) S7'(S(a)) = a** = a® = S~'a. (3) We have

S a.
p € Spec(A) and pN S = o.

proved earlier. O
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Let us have a better understanding of S(a):

Lemma 4. S(a) = J,.q(a:s).

Proof.
/
a € S(a) @% ceSlae3dsde s de a,% = a—/,
s
3" € 8,s"(sa—d) =04 (s"s')a=5"d €a
~——
=JseS,saca=ac U(a:s).
seS
aeU(a:s):ﬂses,saeaég:%6571a
1 s
seS
=a € S(a);
and claim follows. 0

Proposition 5. (1) If q is p-primary and p NS # &, then S~'q = S 1A.
(2) If q is p-primary and pN S = &, then S(q) = q.
(3) If q is p-primary and p NS = @, then S~1q is S~ p-primary.
(4) Suppose p € Spec(A) and p N S. Then extension and contraction maps

iduce bijections between
{q < A| q is p-primary} and {q < S TA|q is S”'p-primary}.

Proof. (1) If a € p N S, then for some positive integer n, a™ € q N S; and so
S7lq=S5"1A.
(2) Suppose a € S(q); then there is s € S such that sa € q. Since SNp = G,

s & p. As q is p-primary, sa € q, and s ¢ p, we deduce that a € q.
(3) First we show that /S—1q = S~ 'p.

a — L o(a\" . a\” .
;6\/8 lg=3dneZ ,(;) es q,:(1> €S g,
=a"€S(q)=q=ac/q=1p

=2 ¢ S~1p.
S
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And

%eSflp:%eS*lp:aeS(p):p

=IneZ,a" €q= g €S 1.

Next we show S™!q is primary; we have already proved that it is proper. Suppose
¢.2 ¢ S7lgand £ ¢ v/S71q = S7p. Then for some s” € S, we have s"ad’ € q
and @’ € p. Since SNp =g, s" € S, d & p, and p is prime, we deduce that
s"a' ¢ p. Since q is p-primary, s"a’ & p, and (s"a')a € q, we have a € q. Thus
4e Sy

(4) To show this part, it remains to show q := q° is p-primary if q is S~ 'p-
primary. First we show that /q = p.

Suppose a € ,/q; then for some positive integer n, a” € g, which means % €q.
Hence ¢ € v/§ = S"'p. Therefore a € S(p) = p. If b € p, then b e S~'p. Hence
for some positive integer n, % € q, which implies that b" € q. Thus b € /3.

Next we show that q is primary. We have already showed that it is proper.
Suppose zy € qand y & /g =p. Then £-2 c gand £ ¢ S~'p (as S(p) = p). As
q is primary, we deduce that ¢ € q. Hence = € q. O

LOCALIZATION AND PRIMARY DECOMPOSITION

Lemma 6. Suppose (), q; is a reduced primary decomposition of a, q; is p;-
primary, and SN p;, = & if and only if 1 <1 < m. Then

(1) S7la =2, S 'ai;

(2) S(a) = N1 %

Proof. For any i, a; C q;; and so S~'a C S~ 'q; and S(a) C S(q;). Therefore

S7'a C ()5 "qi and S(a) € (1) S(a)-
i=1 i=1

By the previous lemma, S7'q; = S7!'A4 and S(q;) = A if i > m, and S(q;) = q; if
1 <7 < m; hence

S™la C ﬂS‘lqi and S(a) C ﬂqi.
i=1 i=1

Suppose ¢ € (", S~'q;; then ¢ € N, S™"q;. Hence a € (2 S(q:) = N di-
For i > m, let s; € SNq; set s = [[.,, s Then sa € N, q; = a and

i>m
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s € S. Therefore ¢ = £2 ¢ S~1q. This implies that S~la = N, S~ 'q;. After
S S's 1=

contraction we get

S@) = S@) =[a:

=1

THE SECOND UNIQUENESS THEOREM

Definition 7. Suppose a is decomposable. A subset X3 of Ass(a) is called isolated
if ¥ is not empty and

(peX,p €Ass(a),p Cp)=>p ek

An important example is the following: suppose p is a minimal element of
Ass(a); then {p} is isolated.

Theorem 8. Suppose a is decomposable and ¥ C Ass(a) is isolated. Suppose
Ni_; 4 is a reduced primary decomposition. Then ﬂ\/@ez q; Just depends on a and
Y: and it is independent of the choice of a primary decomposition. In particular,
if p is a minimal element of Ass(a), then there is a p-primary ideal q that appears

i all the reduced primary decompositions of a.

Proof. We want to use a suitable localization and use the previous lemma. So we
need to find a multiplicatively closed set Sy, such that Sx(a) becomes ﬂpiez q
where p; := \/q;. By the previous lemma, Sx(a) = (), ng,—5 9i- So we have to
find Sy, in a way that

Sy Np;, =T p; € X

This suggests that we let Sy := A\ [, 5 p-

Claim 1. S, := A\ [,y p is multiplicatively closed.

Proof of Claim 1. Suppose s1,ss € Sy, and s1s9 € Sy; then sys9 € p for some
p € 2. Since p is prime, either s; € p or s9 € p. Hence either s; € Sy or so € Sy;
this is a contradiction.

Claim 2. Sy Np, =T & p; € 2.

Proof of Claim 2. 1f p; € X, then we have that Sy N p; = @, by definition of
Sy;. Next suppose p; NSy, = J; then

P C Up

pes
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By a result that we have proved earlier (and you have proved its generalization,

McCoy’s result), we have that p; C p for some p € 3. Since ¥ is isolated, we
deduce that p; € X.

Overall we get Sx(a) =, e

3 and it is independent of the choice of a reduced primary factorization. 0J

q;. Hence this intersection just depends on a and

KRULL DIMENSION ONE INTEGRAL DOMAINS

Definition 9. The Krull dimension of a ring A is defined to be
dim A := sup{n € Z=°| 3p; € Spec(A),po  --- C pn}.

Example 10. Suppose D is an integral domain; then dim D = 0 if and only if
D is a field.

Proof. (=) Suppose to the contrary that D is not a field. So there is d € D\
D* U {0}; this means (d) is a non-zero proper ideal of D. So there is a non-zero
maximal ideal m of D (that contains d). This means dimD > 1as 0 C mis a
chain of prime ideals of D; and this is a contradiction.

(<) Since D is a field, its only proper ideal is 0; and claim follows. O

Example 11. Suppose D 1is an integral domain which is not a field. Then
dim D =1 if and only if Spec(D) = {0} U Max(D).

Proof. (=) Suppose p is a non-zero prime ideal, and m is a maximal ideal of D
that contains p as a subset. Then 0 C p C m is a chain of prime ideals. As
dim D = 1, we deduce that p = m, which means p is a maximal ideal.

(<) Since Spec(D) = {0} U Max(D), any non-zero prime ideal is maximal.
This means we cannot have a chain of prime ideals that have length two (that
means there are no prime ideals such that 0 C p; C po as p; is maximal). Thus
dim D < 1. By the previous example and the assumption that D is not a field,
we deduce that dim D # 0. Hence dim D = 1. O

Proposition 12. Suppose D 1is an integral domain of Krull dimension 1; then

any decomposable ideal has a unique primary decomposition.

Proof. Notice that 0 is a reduced primary decomposition of 0; hence Ass(0) = {0}.

Since 0 is minimal in Ass(0), 0 is the only reduced primary decomposition of 0.
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Suppose a is a non-zero decomposable ideal. Then 0 ¢ Ass(a). By the previous
lemma, we deduce that Ass(a) C Max(A). This implies that any element of
Ass(a) is minimal in Ass(a) (one maximal ideal cannot be a subset of another
maximal ideal). Hence for any p € Ass(a), there is a p-primary ideal q, that
appears in all the reduced primary decompositions of a. Hence ﬂpe Ass(a) is the

unique reduced primary decomposition of a. 0
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