MATH200C, LECTURE 9

GOLSEFIDY

In the previous lecture we proved:

Proposition 1. Suppose \mathfrak{a} is decomposable. Then

$$\bigcup_{\mathfrak{p}\in \mathrm{Ass}(\mathfrak{a})}\mathfrak{p} = \{x \in A | \ (\mathfrak{a}:x) \neq \mathfrak{a}\}.$$

We have also pointed out the connection with zero-divisors; let's add a bit to this connection:

Corollary 2. $D(A) = \bigcup_{\mathfrak{p} \in Ass(0)} \mathfrak{p}$ and $Nil(A) = \bigcap_{\mathfrak{p} \in Ass(0)} \mathfrak{p}$.

Proof. Notice that $x \in D(A)$ if and only if $(0:x) \neq 0$; and so $D(A) = \bigcap_{\mathfrak{p} \in Ass(0)} \mathfrak{p}$, by the previous proposition.

Since 0 is decomposable, for any $\mathfrak{p} \in \operatorname{Spec}(A)$, there is $\mathfrak{p}' \in \operatorname{Ass}(0)$ such that $\mathfrak{p}' \subseteq \mathfrak{p}$. Hence $\bigcap_{\mathfrak{p}' \in \operatorname{Ass}(0)} \mathfrak{p}' \subseteq \mathfrak{p}$ for any $\mathfrak{p} \in \operatorname{Spec}(A)$; this implies that

$$\bigcap_{\mathfrak{p}'\in \operatorname{Ass}(0)}\mathfrak{p}'\subseteq \bigcap_{\mathfrak{p}\in \operatorname{Spec}(A)}\mathfrak{p}=\operatorname{Nil}(A)$$

Clearly $\operatorname{Nil}(A) = \bigcap_{\mathfrak{p} \in \operatorname{Spec}(A)} \mathfrak{p} \subseteq \bigcap_{\mathfrak{p}' \in \operatorname{Ass}(0)} \mathfrak{p}'$; and claim follows.

LOCALIZATION AND PRIMARY IDEALS

Suppose S is a multiplicatively closed subset of A; and let $f : A \to S^{-1}A$, f(a) := a/1. We have proved that any ideal of $S^{-1}A$ is an extended ideal; and so $\tilde{\mathfrak{a}}^{ce} = \tilde{\mathfrak{a}}$. Not any ideal of A is a contracted ideal. Now let $S(\mathfrak{a}) := \mathfrak{a}^{ec}$. Recall that

Lemma 3. (1) $S(\mathfrak{a}) \supseteq \mathfrak{a}$ for any $\mathfrak{a} \trianglelefteq A$. (2) $S^{-1}S(\mathfrak{a}) = S^{-1}\mathfrak{a}$.

(3) $S(\mathfrak{p}) = \mathfrak{p}$ if $\mathfrak{p} \in \operatorname{Spec}(A)$ and $\mathfrak{p} \cap S = \emptyset$.

Proof. (1) $S(\mathfrak{a}) = \mathfrak{a}^{ec} \supseteq \mathfrak{a}$. (2) $S^{-1}(S(\mathfrak{a})) = \mathfrak{a}^{ece} = \mathfrak{a}^e = S^{-1}\mathfrak{a}$. (3) We have proved earlier.

Let us have a better understanding of $S(\mathfrak{a})$:

Lemma 4. $S(\mathfrak{a}) = \bigcup_{s \in S} (\mathfrak{a} : s).$

Proof.

$$\begin{split} a \in S(\mathfrak{a}) \Leftrightarrow &\frac{a}{1} \in S^{-1}\mathfrak{a} \Leftrightarrow \exists s' \in S, a' \in \mathfrak{a}, \frac{a}{1} = \frac{a'}{s'}, \\ \Leftrightarrow \exists s'' \in S, s''(s'a - a') = 0 \Leftrightarrow \underbrace{(s''s')}_{s} a = s''a' \in \mathfrak{a} \\ \Rightarrow \exists s \in S, sa \in \mathfrak{a} \Rightarrow a \in \bigcup_{s \in S} (\mathfrak{a} : s). \\ a \in \bigcup_{s \in S} (\mathfrak{a} : s) \Rightarrow \exists s \in S, sa \in \mathfrak{a} \Rightarrow \frac{a}{1} = \frac{sa}{s} \in S^{-1}\mathfrak{a} \end{split}$$

$$\Rightarrow a \in S(\mathfrak{a});$$

and claim follows.

Proposition 5. (1) If \mathfrak{q} is \mathfrak{p} -primary and $\mathfrak{p} \cap S \neq \emptyset$, then $S^{-1}\mathfrak{q} = S^{-1}A$.

- (2) If \mathfrak{q} is \mathfrak{p} -primary and $\mathfrak{p} \cap S = \emptyset$, then $S(\mathfrak{q}) = \mathfrak{q}$.
- (3) If \mathfrak{q} is \mathfrak{p} -primary and $\mathfrak{p} \cap S = \emptyset$, then $S^{-1}\mathfrak{q}$ is $S^{-1}\mathfrak{p}$ -primary.
- (4) Suppose $\mathfrak{p} \in \operatorname{Spec}(A)$ and $\mathfrak{p} \cap S$. Then extension and contraction maps induce bijections between

 $\{\mathfrak{q} \leq A \mid \mathfrak{q} \text{ is } \mathfrak{p}\text{-primary}\} \text{ and } \{\widetilde{\mathfrak{q}} \leq S^{-1}A \mid \widetilde{\mathfrak{q}} \text{ is } S^{-1}\mathfrak{p}\text{-primary}\}.$

Proof. (1) If $a \in \mathfrak{p} \cap S$, then for some positive integer $n, a^n \in \mathfrak{q} \cap S$; and so $S^{-1}\mathfrak{q} = S^{-1}A$.

(2) Suppose $a \in S(\mathfrak{q})$; then there is $s \in S$ such that $sa \in \mathfrak{q}$. Since $S \cap \mathfrak{p} = \emptyset$, $s \notin \mathfrak{p}$. As \mathfrak{q} is \mathfrak{p} -primary, $sa \in \mathfrak{q}$, and $s \notin \mathfrak{p}$, we deduce that $a \in \mathfrak{q}$.

(3) First we show that $\sqrt{S^{-1}\mathfrak{q}} = S^{-1}\mathfrak{p}$.

$$\begin{split} \frac{a}{s} &\in \sqrt{S^{-1}\mathfrak{q}} \Rightarrow \exists n \in \mathbb{Z}^+, \left(\frac{a}{s}\right)^n \in S^{-1}\mathfrak{q}, \Rightarrow \left(\frac{a}{1}\right)^n \in S^{-1}\mathfrak{q}, \\ \Rightarrow a^n \in S(\mathfrak{q}) = \mathfrak{q} \Rightarrow a \in \sqrt{\mathfrak{q}} = \mathfrak{p} \\ \Rightarrow \frac{a}{s} \in S^{-1}\mathfrak{p}. \end{split}$$

 $\mathbf{2}$

And

$$\begin{aligned} \frac{a}{s} \in S^{-1}\mathfrak{p} \Rightarrow & \frac{a}{1} \in S^{-1}\mathfrak{p} \Rightarrow a \in S(\mathfrak{p}) = \mathfrak{p} \\ \Rightarrow & \exists n \in \mathbb{Z}^+, a^n \in \mathfrak{q} \Rightarrow \frac{a}{s} \in \sqrt{S^{-1}\mathfrak{q}} \end{aligned}$$

Next we show $S^{-1}\mathfrak{q}$ is primary; we have already proved that it is proper. Suppose $\frac{a}{s} \cdot \frac{a'}{s'} \in S^{-1}\mathfrak{q}$ and $\frac{a'}{s'} \notin \sqrt{S^{-1}\mathfrak{q}} = S^{-1}\mathfrak{p}$. Then for some $s'' \in S$, we have $s''aa' \in \mathfrak{q}$ and $a' \notin \mathfrak{p}$. Since $S \cap \mathfrak{p} = \emptyset$, $s'' \in S$, $a' \notin \mathfrak{p}$, and \mathfrak{p} is prime, we deduce that $s''a' \notin \mathfrak{p}$. Since \mathfrak{q} is \mathfrak{p} -primary, $s''a' \notin \mathfrak{p}$, and $(s''a')a \in \mathfrak{q}$, we have $a \in \mathfrak{q}$. Thus $\frac{a}{s} \in S^{-1}\mathfrak{q}$.

(4) To show this part, it remains to show $\mathbf{q} := \tilde{\mathbf{q}}^c$ is \mathfrak{p} -primary if $\tilde{\mathbf{q}}$ is $S^{-1}\mathfrak{p}$ -primary. First we show that $\sqrt{\mathbf{q}} = \mathfrak{p}$.

Suppose $a \in \sqrt{\mathfrak{q}}$; then for some positive integer $n, a^n \in \mathfrak{q}$, which means $\frac{a^n}{1} \in \widetilde{\mathfrak{q}}$. Hence $\frac{a}{1} \in \sqrt{\widetilde{\mathfrak{q}}} = S^{-1}\mathfrak{p}$. Therefore $a \in S(\mathfrak{p}) = \mathfrak{p}$. If $b \in \mathfrak{p}$, then $\frac{b}{1} \in S^{-1}\mathfrak{p}$. Hence for some positive integer $n, \frac{b^n}{1} \in \widetilde{\mathfrak{q}}$, which implies that $b^n \in \mathfrak{q}$. Thus $b \in \sqrt{\mathfrak{q}}$.

Next we show that \mathfrak{q} is primary. We have already showed that it is proper. Suppose $xy \in \mathfrak{q}$ and $y \notin \sqrt{\mathfrak{q}} = \mathfrak{p}$. Then $\frac{x}{1} \cdot \frac{y}{1} \in \widetilde{\mathfrak{q}}$ and $\frac{y}{1} \notin S^{-1}\mathfrak{p}$ (as $S(\mathfrak{p}) = \mathfrak{p}$). As $\widetilde{\mathfrak{q}}$ is primary, we deduce that $\frac{x}{1} \in \widetilde{\mathfrak{q}}$. Hence $x \in \mathfrak{q}$.

LOCALIZATION AND PRIMARY DECOMPOSITION

Lemma 6. Suppose $\bigcap_{i=1}^{n} q_i$ is a reduced primary decomposition of \mathfrak{a} , q_i is \mathfrak{p}_i -primary, and $S \cap \mathfrak{p}_i = \emptyset$ if and only if $1 \leq i \leq m$. Then

(1) $S^{-1}\mathfrak{a} = \bigcap_{i=1}^m S^{-1}\mathfrak{q}_i;$ (2) $S(\mathfrak{a}) = \bigcap_{i=1}^m \mathfrak{q}_i.$

Proof. For any $i, \mathfrak{a}_i \subseteq \mathfrak{q}_i$; and so $S^{-1}\mathfrak{a} \subseteq S^{-1}\mathfrak{q}_i$ and $S(\mathfrak{a}) \subseteq S(\mathfrak{q}_i)$. Therefore

$$S^{-1}\mathfrak{a} \subseteq \bigcap_{i=1}^{n} S^{-1}\mathfrak{q}_{i} \text{ and } S(\mathfrak{a}) \subseteq \bigcap_{i=1}^{n} S(\mathfrak{q}_{i}).$$

By the previous lemma, $S^{-1}\mathfrak{q}_i = S^{-1}A$ and $S(\mathfrak{q}_i) = A$ if i > m, and $S(\mathfrak{q}_i) = \mathfrak{q}_i$ if $1 \le i \le m$; hence

$$S^{-1}\mathfrak{a} \subseteq \bigcap_{i=1}^m S^{-1}\mathfrak{q}_i \text{ and } S(\mathfrak{a}) \subseteq \bigcap_{i=1}^m \mathfrak{q}_i.$$

Suppose $\frac{a}{s} \in \bigcap_{i=1}^{m} S^{-1} \mathfrak{q}_i$; then $\frac{a}{1} \in \bigcap_{i=1}^{m} S^{-1} \mathfrak{q}_i$. Hence $a \in \bigcap_{i=1}^{m} S(\mathfrak{q}_i) = \bigcap_{i=1}^{m} \mathfrak{q}_i$. For i > m, let $s_i \in S \cap \mathfrak{q}_i$; set $s' := \prod_{i > m} s_i$. Then $s'a \in \bigcap_{i=1}^{n} \mathfrak{q}_i = \mathfrak{a}$ and

GOLSEFIDY

 $s' \in S$. Therefore $\frac{a}{s} = \frac{s'a}{s's} \in S^{-1}\mathfrak{a}$. This implies that $S^{-1}\mathfrak{a} = \bigcap_{i=1}^m S^{-1}\mathfrak{q}_i$. After contraction we get

$$S(\mathfrak{a}) = \bigcap_{i=1}^{m} S(\mathfrak{q}_i) = \bigcap_{i=1}^{m} \mathfrak{q}_i.$$

The second uniqueness theorem

Definition 7. Suppose \mathfrak{a} is decomposable. A subset Σ of $Ass(\mathfrak{a})$ is called isolated if Σ is not empty and

$$(\mathfrak{p} \in \Sigma, \mathfrak{p}' \in \operatorname{Ass}(\mathfrak{a}), \mathfrak{p}' \subseteq \mathfrak{p}) \Rightarrow \mathfrak{p}' \in \Sigma.$$

An important example is the following: suppose \mathfrak{p} is a minimal element of $Ass(\mathfrak{a})$; then $\{\mathfrak{p}\}$ is isolated.

Theorem 8. Suppose \mathfrak{a} is decomposable and $\Sigma \subseteq \operatorname{Ass}(\mathfrak{a})$ is isolated. Suppose $\bigcap_{i=1}^{n} \mathfrak{q}_i$ is a reduced primary decomposition. Then $\bigcap_{\sqrt{\mathfrak{q}_i} \in \Sigma} \mathfrak{q}_i$ just depends on \mathfrak{a} and Σ and it is independent of the choice of a primary decomposition. In particular, if \mathfrak{p} is a minimal element of $\operatorname{Ass}(\mathfrak{a})$, then there is a \mathfrak{p} -primary ideal \mathfrak{q} that appears in all the reduced primary decompositions of \mathfrak{a} .

Proof. We want to use a suitable localization and use the previous lemma. So we need to find a multiplicatively closed set S_{Σ} such that $S_{\Sigma}(\mathfrak{a})$ becomes $\bigcap_{\mathfrak{p}_i \in \Sigma} \mathfrak{q}_i$ where $\mathfrak{p}_i := \sqrt{\mathfrak{q}_i}$. By the previous lemma, $S_{\Sigma}(\mathfrak{a}) = \bigcap_{\mathfrak{p}_i \cap S_{\sigma} = \emptyset} \mathfrak{q}_i$. So we have to find S_{Σ} in a way that

$$S_{\Sigma} \cap \mathfrak{p}_i = \emptyset \Leftrightarrow \mathfrak{p}_i \in \Sigma.$$

This suggests that we let $S_{\Sigma} := A \setminus \bigcap_{\mathfrak{p} \in \Sigma} \mathfrak{p}$.

Claim 1. $S_{\sigma} := A \setminus \bigcap_{\mathfrak{p} \in \Sigma} \mathfrak{p}$ is multiplicatively closed.

Proof of Claim 1. Suppose $s_1, s_2 \in S_{\Sigma}$ and $s_1s_2 \notin S_{\Sigma}$; then $s_1s_2 \in \mathfrak{p}$ for some $\mathfrak{p} \in \Sigma$. Since \mathfrak{p} is prime, either $s_1 \in \mathfrak{p}$ or $s_2 \in \mathfrak{p}$. Hence either $s_1 \notin S_{\Sigma}$ or $s_2 \notin S_{\Sigma}$; this is a contradiction.

Claim 2. $S_{\Sigma} \cap \mathfrak{p}_i = \emptyset \Leftrightarrow \mathfrak{p}_i \in \Sigma.$

Proof of Claim 2. If $\mathfrak{p}_i \in \Sigma$, then we have that $S_{\Sigma} \cap \mathfrak{p}_i = \emptyset$, by definition of S_{Σ} . Next suppose $\mathfrak{p}_i \cap S_{\Sigma} = \emptyset$; then

$$\mathfrak{p}_i \subseteq \bigcup_{\mathfrak{p} \in \Sigma} \mathfrak{p}.$$

By a result that we have proved earlier (and you have proved its generalization, McCoy's result), we have that $\mathfrak{p}_i \subseteq \mathfrak{p}$ for some $\mathfrak{p} \in \Sigma$. Since Σ is isolated, we deduce that $\mathfrak{p}_i \in \Sigma$.

Overall we get $S_{\Sigma}(\mathfrak{a}) = \bigcap_{\mathfrak{p}_i \in \Sigma} \mathfrak{q}_i$. Hence this intersection just depends on \mathfrak{a} and Σ and it is independent of the choice of a reduced primary factorization.

Krull dimension one integral domains

Definition 9. The Krull dimension of a ring A is defined to be

 $\dim A := \sup\{n \in \mathbb{Z}^{\geq 0} | \exists \mathfrak{p}_i \in \operatorname{Spec}(A), \mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_n\}.$

Example 10. Suppose D is an integral domain; then dim D = 0 if and only if D is a field.

Proof. (\Rightarrow) Suppose to the contrary that D is not a field. So there is $d \in D \setminus D^{\times} \cup \{0\}$; this means $\langle d \rangle$ is a non-zero proper ideal of D. So there is a non-zero maximal ideal \mathfrak{m} of D (that contains d). This means dim $D \ge 1$ as $0 \subsetneq \mathfrak{m}$ is a chain of prime ideals of D; and this is a contradiction.

 (\Leftarrow) Since D is a field, its only proper ideal is 0; and claim follows.

Example 11. Suppose D is an integral domain which is not a field. Then $\dim D = 1$ if and only if $\operatorname{Spec}(D) = \{0\} \cup \operatorname{Max}(D)$.

Proof. (\Rightarrow) Suppose \mathfrak{p} is a non-zero prime ideal, and \mathfrak{m} is a maximal ideal of D that contains \mathfrak{p} as a subset. Then $0 \subsetneq \mathfrak{p} \subseteq \mathfrak{m}$ is a chain of prime ideals. As dim D = 1, we deduce that $\mathfrak{p} = \mathfrak{m}$, which means \mathfrak{p} is a maximal ideal.

(\Leftarrow) Since Spec(D) = {0} \cup Max(D), any non-zero prime ideal is maximal. This means we cannot have a chain of prime ideals that have length two (that means there are no prime ideals such that $0 \subsetneq \mathfrak{p}_1 \subsetneq \mathfrak{p}_2$ as \mathfrak{p}_1 is maximal). Thus dim $D \leq 1$. By the previous example and the assumption that D is not a field, we deduce that dim $D \neq 0$. Hence dim D = 1.

Proposition 12. Suppose D is an integral domain of Krull dimension 1; then any decomposable ideal has a unique primary decomposition.

Proof. Notice that 0 is a reduced primary decomposition of 0; hence $Ass(0) = \{0\}$. Since 0 is minimal in Ass(0), 0 is the only reduced primary decomposition of 0.

GOLSEFIDY

Suppose \mathfrak{a} is a non-zero decomposable ideal. Then $0 \notin \operatorname{Ass}(\mathfrak{a})$. By the previous lemma, we deduce that $\operatorname{Ass}(\mathfrak{a}) \subseteq \operatorname{Max}(A)$. This implies that any element of $\operatorname{Ass}(\mathfrak{a})$ is minimal in $\operatorname{Ass}(\mathfrak{a})$ (one maximal ideal cannot be a subset of another maximal ideal). Hence for any $\mathfrak{p} \in \operatorname{Ass}(\mathfrak{a})$, there is a \mathfrak{p} -primary ideal $\mathfrak{q}_{\mathfrak{p}}$ that appears in all the reduced primary decompositions of \mathfrak{a} . Hence $\bigcap_{\mathfrak{p}\in\operatorname{Ass}(\mathfrak{a})}\mathfrak{q}_{\mathfrak{p}}$ is the unique reduced primary decomposition of \mathfrak{a} .