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EXISTENCE OF PRIMARY DECOMPOSITION IN A NOETHERIAN RING.

Similar to the proof of existence of a decomposition into irreducible elements
we define an irreducible ideal and decompose a given ideal into irreducible ideals.

Next we show in a Noetherian ring an irreducible ideal is primary.

Definition 1. We say a proper ideal a < A is irreducible if for proper ideals b
and ¢ the following holds

a=bNc=(a=bora=rc).

Lemma 2. In a Noetherian ring any proper ideal can be written as an intersection

of finitely many irreducible ideals.

Proof. Suppose to the contrary that there is a proper ideal that cannot be written

as an intersection of finitely manny irreducible ideals; that means
Y :={a<A|a# A, a# intersection of finitely many irreducible ideals }

is not empty. Since A is Noetherian, > has a maximal element ay. Since ag € %,
it is proper and it is not irreducible. So there are proper ideals b and ¢ such that
ap=bNc, a9 C b, and ag C ¢. Since qy is a maximal element of X, b, ¢ € X; this
means b = (_, ¢; and ¢ =", q; for some irreducible ideals ¢; and q}. Hence

n m

o = (m qi) N (m a),

i=1 i=1
which means ay can be written as an intersection of finitely many irreducible

ideals; and this is a contradiction. O
Lemma 3. In a Noetherian ring, an irreducible ideal is primary.

Proof. Suppose q is an irreducible ideal of A. Let A := A/q. Since q is irreducible

in A, 0 is irreducible in A. To show q is primary, it is (necessary and) sufficient
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to show any zero-divisor of A is nilpotent. Suppose z is a zero-divisor of A; that

means there is a non-zero element y in (0 : ). Consider the chain of ideals
0:2)C(0:2*)C---.
Since A is Noetherian, there is a positive integer n such that
(0:2") = (0:2™),

Claim. (y) N (z™) = 0.
Proof of Claim. Suppose z € (y) N (z™); then zz = 0 as z € (y) and yxr = 0.

"+l which means

Since z € (z"), z = ax™ for some a € A. Hence 0 = zz = ax
a€ (0:2")=(0:2"). And so z = ax™ = 0.
Since 0 is irreducible, = and y are zero-divisors (and so they are not units),

and y # 0, we have that 2" = 0; as we desired. O

Theorem 4. In a Noetherian ring any proper ideal has a reduced primary de-

composition.
Proof. This is an immediate corollary of the previous lemmas. O

Corollary 5. In a Noetherian ring A, Spec(A) has only finitely many minimal
elements pq, ..., pn; in particular Spec(A) = {p1,...,pn}

Proof. Since A is Noetherian, 0 is decomposable. So the set of minimal elements
of Spec(A) is the same as the set of minimal elements of Ass(0). Hence there are
only finitely many such ideals.

Suppose V(a) = {p1,...,p,} and p € Spec(A). Then there is i such that
p; C p. Hence p|p;|a, which implies p € V(a); and claim follows. O

INTEGRAL EXTENSIONS

Definition 6. (1) Suppose A is a subring of B; in this case we say B/A is a
Ting extension.
(2) We say b € B is integral over A if there is a monic polynomial f(z) =
Sorgaixt € Alx] such that f(b) = 0; that means Y, ,a;b" = 0.
(3) We say B/A is an integral extension if any b € B is integral over A.

Proposition 7. Suppose A is a subring of B; the following statements are equiv-

alent:



MATH200C, LECTURE 10 3
(1) b € B is integral over A.
(2) Alb] is a finitely generated A-module.
(8) There is a subring C' of B such that A[b] C C' and C' is a finitely generated
A-module.
(4) There is a faithful A[b]-module M that is a finitely generated A-module.

Recall. Suppose M is an R-module. Then Ann(M) :={r € R|Vz € M,rz =
0} is an ideal of R; and we say M is a faithful R-module if Ann(M) = 0. For
a commutative ring R, r — [, where [,.(z) := ra defines a ring homomorphism
from R to Endgr(M) and its kernel is Ann(M).

Proof. (1)=(2) Suppose f(z) € Alz] is a monic polynomial and f(b) = 0. For any
g(x) € Alz], by long division (notice that since f(z) is monic, the process of long
division is feasible), there are q(x),r(z) € A[z] such that g(x) = f(x)q(x) + r(x)
and degr < deg f. Hence g(b) = r(b) = E?E%f_l a;b* for some a; € A; therefore
Alp] = %871 Ab' which means A[b] is generated by {1,b,...,b%8/~1} as an
A-module.

(2)=(3) Let C := A[b].

(3)=(4) Let M := C'; notice that for any r € A[b], - 1 = r implies that C is
a faithful A[b]-module.

(4)=(1) Let I, : M — M,ly(z) := br. Since A[b] is commutative, [, €
End,(M). Since M is a finitely generated A-module, there are a; € A such
that

4 @ualy ™ 4+ @l +a =0
in End4(R), where @; := l,,'. This means
b" + ap b+ 4 ag € Ann(M) = 0;

and claim follows. O

INTEGRAL CLOSURE

Lemma 8. Suppose B/A is a ring extension, by, ..., b, € B are integral over A.
Then Alby, ..., b,] is a finitely generated A-module.

1We have proved such a result earlier, based on this result we showed Nakayama’s lemma.
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Alby, ..., b,] is the subring of B that is generated by A and b;’s. This can be

viewed as the image of evaluation at (by,...,b,):

¢ Az, .. x,] = Bo(f(xy, ... 2,)) = f(br,...,by).

Proof. Since b;’s are integral over A, there are monic polynomials f;(x) € Alx]
such that f;(b;) = 0. By induction on n, we prove that Alb,...,b,] is generated
by {0 ---bin| 0 <4 < deg f1,...,0 <i, < deg f,,}. We proceed by induction on
n; we have already proved the base of induction. So we focus on the induction
step. For g € A[xq,...,2,41], there are polynomials g; € A[xy,...,x,] such that
g=> 1,9, . By the induction hypothesis, there are a;; € A such that

gi(bla---abn>: Z CLZ’Jb]lleln
J€[0.. deg f1)x---[0.. deg fn)

Hence

g<b17 e 7bn+1) = Zgi(bla v 7bn>bj1+1 = Z Za@jb? T bgznbi,+1
=0 =0 j

m
_ J1 j i
= § by by (§ ai,jan)
j i=0
———

d -1
eA[bn+1]:ZjigOfn+1 Abib+1
deg fn+1—1

— jl j !/ jn-l»l
= E byt - b ( E aj,jn+1bn+1 ),
Jj Jn+1=0

/
for some @iy

€ A (and j € [0..deg f1) x ---[0..deg f,)); and claim follows. [
Corollary 9. Suppose B/A is a ring extension. Let

C :={b € B| b is integral over A}.
Then C' is a subring of B.

Definition. (' is called the integral closure of A in B. We say A is integrally
closed in B if C' = A.

Proof. Suppose by,by € C; then by the previous lemma, A[by,bs] is a finitely
generated A-module. Hence by Part (3) of Proposition 7, we have that any
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element of A[by, bs] is integral over A. Therefore by £ by and by by are integral over
A, which means by + by, b1by € C. Thus C' is a subring of B. O

Definition 10. An integral domain D is called integrally closed if it is integrally

closed in its field of fractions.
Example 11. Because of the rational root criterion a UFD 1is integrally closed.

Remark. We will show that being integrally closed is a local property; but we
have seen that being a UFD is not a local property. This makes being integrally

closed a better “geometric” property.

Lemma 12. Suppose B/A and C/B are integral extensions; then C/A is an

integral extension.

Proof. For ¢ € C, there are b;’s in B such that
" A by bic by = 0.

So c is integral over A[by, ..., b, 1], which implies that

k
A[bg, ce 7bn—17 C] = Z A[bo, ceey bn_l]Cj
j=0

for some k. Since b;’s are integral over A, by an earlier lemma we have
A[bo, P 7bn71:| = Z Ab%o e b,zln:ll’
jeJ

for some finite set J. Overall we get

k
Albg, ..., bp_1,c] = ZZA%'O .. bin:llcj’

j=0 jeJ

which implies that A[bg,...,b,_1,c| is a finitely generated A-module. Thus an-
other application of Proposition 7 implies that ¢ is integral over A; and claim
follows. 0

Corollary 13. Suppose B/A is a ring extension and C' is the integral closure of
A in B; then C' is integrally closed in B.

Proof. Let C be the integral closure of C' in B. Then C'/C and C/A are integral.
Hence C/A is integral, which implies that C' C C. Therefore C = C. U



