MATH200C, LECTURE 10

GOLSEFIDY

EXISTENCE OF PRIMARY DECOMPOSITION IN A NOETHERIAN RING.

Similar to the proof of existence of a decomposition into *irreducible elements* we define an *irreducible ideal* and decompose a given ideal into irreducible ideals. Next we show in a Noetherian ring an irreducible ideal is primary.

Definition 1. We say a proper ideal $\mathfrak{a} \leq A$ is irreducible if for proper ideals \mathfrak{b} and \mathfrak{c} the following holds

$$\mathfrak{a} = \mathfrak{b} \cap \mathfrak{c} \Rightarrow (\mathfrak{a} = \mathfrak{b} \ or \ \mathfrak{a} = \mathfrak{c}).$$

Lemma 2. In a Noetherian ring any proper ideal can be written as an intersection of finitely many irreducible ideals.

Proof. Suppose to the contrary that there is a proper ideal that cannot be written as an intersection of finitely manny irreducible ideals; that means

 $\Sigma := \{ \mathfrak{a} \trianglelefteq A | \mathfrak{a} \neq A, \mathfrak{a} \neq \text{intersection of finitely many irreducible ideals } \}$

is not empty. Since A is Noetherian, Σ has a maximal element \mathfrak{a}_0 . Since $\mathfrak{a}_0 \in \Sigma$, it is proper and it is not irreducible. So there are proper ideals \mathfrak{b} and \mathfrak{c} such that $\mathfrak{a}_0 = \mathfrak{b} \cap \mathfrak{c}, \mathfrak{a}_0 \subsetneq \mathfrak{b}, \text{ and } \mathfrak{a}_0 \subsetneq \mathfrak{c}$. Since \mathfrak{a}_0 is a maximal element of Σ , $\mathfrak{b}, \mathfrak{c} \notin \Sigma$; this means $\mathfrak{b} = \bigcap_{i=1}^n \mathfrak{q}_i$ and $\mathfrak{c} = \bigcap_{i=1}^m \mathfrak{q}'_i$ for some irreducible ideals \mathfrak{q}_i and \mathfrak{q}'_i . Hence

$$\mathfrak{a}_0 = (igcap_{i=1}^n \mathfrak{q}_i) \cap (igcap_{i=1}^m \mathfrak{q}'_i),$$

which means \mathfrak{a}_0 can be written as an intersection of finitely many irreducible ideals; and this is a contradiction.

Lemma 3. In a Noetherian ring, an irreducible ideal is primary.

Proof. Suppose \mathfrak{q} is an irreducible ideal of A. Let $\overline{A} := A/\mathfrak{q}$. Since \mathfrak{q} is irreducible in A, 0 is irreducible in \overline{A} . To show \mathfrak{q} is primary, it is (necessary and) sufficient

GOLSEFIDY

to show any zero-divisor of \overline{A} is nilpotent. Suppose x is a zero-divisor of \overline{A} ; that means there is a non-zero element y in (0:x). Consider the chain of ideals

$$(0:x) \subseteq (0:x^2) \subseteq \cdots$$

Since A is Noetherian, there is a positive integer n such that

$$(0:x^n) = (0:x^{n+1}).$$

Claim. $\langle y \rangle \cap \langle x^n \rangle = 0.$

Proof of Claim. Suppose $z \in \langle y \rangle \cap \langle x^n \rangle$; then zx = 0 as $z \in \langle y \rangle$ and yx = 0. Since $z \in \langle x^n \rangle$, $z = ax^n$ for some $a \in A$. Hence $0 = zx = ax^{n+1}$, which means $a \in (0: x^{n+1}) = (0: x^n)$. And so $z = ax^n = 0$.

Since 0 is irreducible, x and y are zero-divisors (and so they are not units), and $y \neq 0$, we have that $x^n = 0$; as we desired.

Theorem 4. In a Noetherian ring any proper ideal has a reduced primary decomposition.

Proof. This is an immediate corollary of the previous lemmas. \Box

Corollary 5. In a Noetherian ring A, Spec(A) has only finitely many minimal elements $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$; in particular $\text{Spec}(A) = \overline{\{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}}$.

Proof. Since A is Noetherian, 0 is decomposable. So the set of minimal elements of Spec(A) is the same as the set of minimal elements of Ass(0). Hence there are only finitely many such ideals.

Suppose $V(\mathfrak{a}) = {\mathfrak{p}_1, \ldots, \mathfrak{p}_n}$ and $\mathfrak{p} \in \text{Spec}(A)$. Then there is *i* such that $\mathfrak{p}_i \subseteq \mathfrak{p}$. Hence $\mathfrak{p}|\mathfrak{p}_i|\mathfrak{a}$, which implies $\mathfrak{p} \in V(\mathfrak{a})$; and claim follows. \Box

INTEGRAL EXTENSIONS

Definition 6. (1) Suppose A is a subring of B; in this case we say B/A is a ring extension.

- (2) We say $b \in B$ is integral over A if there is a monic polynomial $f(x) := \sum_{i=0}^{n} a_i x^i \in A[x]$ such that f(b) = 0; that means $\sum_{i=0}^{n} a_i b^i = 0$.
- (3) We say B/A is an integral extension if any $b \in B$ is integral over A.

Proposition 7. Suppose A is a subring of B; the following statements are equivalent:

- (1) $b \in B$ is integral over A.
- (2) A[b] is a finitely generated A-module.
- (3) There is a subring C of B such that $A[b] \subseteq C$ and C is a finitely generated A-module.
- (4) There is a faithful A[b]-module M that is a finitely generated A-module.

Recall. Suppose M is an R-module. Then $\operatorname{Ann}(M) := \{r \in R | \forall x \in M, rx = 0\}$ is an ideal of R; and we say M is a faithful R-module if $\operatorname{Ann}(M) = 0$. For a commutative ring $R, r \mapsto l_r$, where $l_r(x) := rx$ defines a ring homomorphism from R to $\operatorname{End}_R(M)$ and its kernel is $\operatorname{Ann}(M)$.

Proof. (1) \Rightarrow (2) Suppose $f(x) \in A[x]$ is a monic polynomial and f(b) = 0. For any $g(x) \in A[x]$, by long division (notice that since f(x) is monic, the process of long division is feasible), there are $q(x), r(x) \in A[x]$ such that g(x) = f(x)q(x) + r(x) and deg $r < \deg f$. Hence $g(b) = r(b) = \sum_{i=0}^{\deg f-1} a_i b^i$ for some $a_i \in A$; therefore $A[b] = \sum_{i=0}^{\deg f-1} Ab^i$, which means A[b] is generated by $\{1, b, \ldots, b^{\deg f-1}\}$ as an A-module.

 $(2) \Rightarrow (3)$ Let C := A[b].

 $(3) \Rightarrow (4)$ Let M := C; notice that for any $r \in A[b]$, $r \cdot 1 = r$ implies that C is a faithful A[b]-module.

 $(4) \Rightarrow (1)$ Let $l_b : M \to M, l_b(x) := bx$. Since A[b] is commutative, $l_b \in$ End_A(M). Since M is a finitely generated A-module, there are $a_i \in A$ such that

$$l_b^n + \overline{a}_{n-1}l_b^{n-1} + \dots + \overline{a}_1l_b + \overline{a}_0 = 0$$

in $\operatorname{End}_A(R)$, where $\overline{a}_i := l_{a_i}^{-1}$. This means

$$b^{n} + a_{n-1}b^{n-1} + \dots + a_0 \in \operatorname{Ann}(M) = 0;$$

and claim follows.

INTEGRAL CLOSURE

Lemma 8. Suppose B/A is a ring extension, $b_1, \ldots, b_n \in B$ are integral over A. Then $A[b_1, \ldots, b_n]$ is a finitely generated A-module.

¹We have proved such a result earlier, based on this result we showed Nakayama's lemma.

GOLSEFIDY

 $A[b_1, \ldots, b_n]$ is the subring of B that is generated by A and b_i 's. This can be viewed as the image of evaluation at (b_1, \ldots, b_n) :

$$\phi: A[x_1, \dots, x_n] \to B, \phi(f(x_1, \dots, x_n)) := f(b_1, \dots, b_n).$$

Proof. Since b_i 's are integral over A, there are monic polynomials $f_i(x) \in A[x]$ such that $f_i(b_i) = 0$. By induction on n, we prove that $A[b_1, \ldots, b_n]$ is generated by $\{b_1^{i_1} \cdots b_n^{i_n} | 0 \le i_1 < \deg f_1, \ldots, 0 \le i_n < \deg f_n\}$. We proceed by induction on n; we have already proved the base of induction. So we focus on the induction step. For $g \in A[x_1, \ldots, x_{n+1}]$, there are polynomials $g_i \in A[x_1, \ldots, x_n]$ such that $g = \sum_{i=0}^m g_i x_{n+1}^i$. By the induction hypothesis, there are $a_{i,j} \in A$ such that

$$g_i(b_1,\ldots,b_n) = \sum_{\mathbf{j}\in[0\ldots\,\deg\,f_1)\times\cdots[0\ldots\,\deg\,f_n)} a_{i,\mathbf{j}} b_1^{j_1}\cdots b_n^{j_n}$$

Hence

$$g(b_1, \dots, b_{n+1}) = \sum_{i=0}^m g_i(b_1, \dots, b_n) b_{n+1}^i = \sum_{i=0}^m \sum_{\mathbf{j}} a_{i,\mathbf{j}} b_1^{j_1} \cdots b_n^{j_n} b_{n+1}^i$$
$$= \sum_{\mathbf{j}} b_1^{j_1} \cdots b_n^{j_n} \underbrace{(\sum_{i=0}^m a_{i,\mathbf{j}} b_{n+1}^i)}_{\in A[b_{n+1}] = \sum_{j=0}^{\deg f_{n+1}-1} Ab_{n+1}^j}$$
$$= \sum_{\mathbf{j}} b_1^{j_1} \cdots b_n^{j_n} (\sum_{j_{n+1}=0}^{\deg f_{n+1}-1} a_{\mathbf{j},j_{n+1}}^i b_{n+1}^{j_{n+1}}),$$

for some $a'_{\mathbf{j},j_{n+1}} \in A$ (and $\mathbf{j} \in [0.. \deg f_1) \times \cdots (0.. \deg f_n)$); and claim follows. \Box

Corollary 9. Suppose B/A is a ring extension. Let

$$C := \{ b \in B | b \text{ is integral over } A \}.$$

Then C is a subring of B.

Definition. C is called the integral closure of A in B. We say A is integrally closed in B if C = A.

Proof. Suppose $b_1, b_2 \in C$; then by the previous lemma, $A[b_1, b_2]$ is a finitely generated A-module. Hence by Part (3) of Proposition 7, we have that any

element of $A[b_1, b_2]$ is integral over A. Therefore $b_1 \pm b_2$ and b_1b_2 are integral over A, which means $b_1 \pm b_2, b_1b_2 \in C$. Thus C is a subring of B.

Definition 10. An integral domain D is called integrally closed if it is integrally closed in its field of fractions.

Example 11. Because of the rational root criterion a UFD is integrally closed.

Remark. We will show that being integrally closed is a local property; but we have seen that being a UFD is not a local property. This makes being integrally closed a better "geometric" property.

Lemma 12. Suppose B/A and C/B are integral extensions; then C/A is an integral extension.

Proof. For $c \in C$, there are b_i 's in B such that

$$c^{n} + b_{n-1}c^{n-1} + \dots + b_{1}c + b_{0} = 0.$$

So c is integral over $A[b_0, \ldots, b_{n-1}]$, which implies that

$$A[b_0, \dots, b_{n-1}, c] = \sum_{j=0}^k A[b_0, \dots, b_{n-1}]c^j$$

for some k. Since b_i 's are integral over A, by an earlier lemma we have

$$A[b_0,\ldots,b_{n-1}] = \sum_{\mathbf{j}\in J} Ab_0^{j_0}\cdots b_{n-1}^{j_{n-1}},$$

for some finite set J. Overall we get

$$A[b_0,\ldots,b_{n-1},c] = \sum_{j=0}^k \sum_{\mathbf{j}\in J} Ab_0^{j_0}\cdots b_{n-1}^{j_{n-1}}c^j,$$

which implies that $A[b_0, \ldots, b_{n-1}, c]$ is a finitely generated A-module. Thus another application of Proposition 7 implies that c is integral over A; and claim follows.

Corollary 13. Suppose B/A is a ring extension and C is the integral closure of A in B; then C is integrally closed in B.

Proof. Let \overline{C} be the integral closure of C in B. Then \overline{C}/C and C/A are integral. Hence \overline{C}/A is integral, which implies that $\overline{C} \subseteq C$. Therefore $\overline{C} = C$. \Box