MATH200C, LECTURE 10

GOLSEFIDY

Existence of primary decomposition in a Noetherian ring.

Similar to the proof of existence of a decomposition into irreducible elements we define an irreducible ideal and decompose a given ideal into irreducible ideals. Next we show in a Noetherian ring an irreducible ideal is primary.

Definition 1. We say a proper ideal $\mathfrak{a} \unlhd A$ is irreducible if for proper ideals \mathfrak{b} and \mathfrak{c} the following holds

$$
\mathfrak{a}=\mathfrak{b} \cap \mathfrak{c} \Rightarrow(\mathfrak{a}=\mathfrak{b} \text { or } \mathfrak{a}=\mathfrak{c}) .
$$

Lemma 2. In a Noetherian ring any proper ideal can be written as an intersection of finitely many irreducible ideals.

Proof. Suppose to the contrary that there is a proper ideal that cannot be written as an intersection of finitely manny irreducible ideals; that means

$$
\Sigma:=\{\mathfrak{a} \unlhd A \mid \mathfrak{a} \neq A, \mathfrak{a} \neq \text { intersection of finitely many irreducible ideals }\}
$$

is not empty. Since A is Noetherian, Σ has a maximal element \mathfrak{a}_{0}. Since $\mathfrak{a}_{0} \in \Sigma$, it is proper and it is not irreducible. So there are proper ideals \mathfrak{b} and \mathfrak{c} such that $\mathfrak{a}_{0}=\mathfrak{b} \cap \mathfrak{c}, \mathfrak{a}_{0} \subsetneq \mathfrak{b}$, and $\mathfrak{a}_{0} \subsetneq \mathfrak{c}$. Since \mathfrak{a}_{0} is a maximal element of $\Sigma, \mathfrak{b}, \mathfrak{c} \notin \Sigma$; this means $\mathfrak{b}=\bigcap_{i=1}^{n} \mathfrak{q}_{i}$ and $\mathfrak{c}=\bigcap_{i=1}^{m} \mathfrak{q}_{i}^{\prime}$ for some irreducible ideals \mathfrak{q}_{i} and $\mathfrak{q}_{i}^{\prime}$. Hence

$$
\mathfrak{a}_{0}=\left(\bigcap_{i=1}^{n} \mathfrak{q}_{i}\right) \cap\left(\bigcap_{i=1}^{m} \mathfrak{q}_{i}^{\prime}\right),
$$

which means \mathfrak{a}_{0} can be written as an intersection of finitely many irreducible ideals; and this is a contradiction.

Lemma 3. In a Noetherian ring, an irreducible ideal is primary.
Proof. Suppose \mathfrak{q} is an irreducible ideal of A. Let $\bar{A}:=A / \mathfrak{q}$. Since \mathfrak{q} is irreducible in $A, 0$ is irreducible in \bar{A}. To show \mathfrak{q} is primary, it is (necessary and) sufficient
to show any zero-divisor of \bar{A} is nilpotent. Suppose x is a zero-divisor of \bar{A}; that means there is a non-zero element y in $(0: x)$. Consider the chain of ideals

$$
(0: x) \subseteq\left(0: x^{2}\right) \subseteq \cdots
$$

Since A is Noetherian, there is a positive integer n such that

$$
\left(0: x^{n}\right)=\left(0: x^{n+1}\right)
$$

Claim. $\langle y\rangle \cap\left\langle x^{n}\right\rangle=0$.
Proof of Claim. Suppose $z \in\langle y\rangle \cap\left\langle x^{n}\right\rangle$; then $z x=0$ as $z \in\langle y\rangle$ and $y x=0$.
Since $z \in\left\langle x^{n}\right\rangle, z=a x^{n}$ for some $a \in A$. Hence $0=z x=a x^{n+1}$, which means $a \in\left(0: x^{n+1}\right)=\left(0: x^{n}\right)$. And so $z=a x^{n}=0$.

Since 0 is irreducible, x and y are zero-divisors (and so they are not units), and $y \neq 0$, we have that $x^{n}=0$; as we desired.

Theorem 4. In a Noetherian ring any proper ideal has a reduced primary decomposition.

Proof. This is an immediate corollary of the previous lemmas.
Corollary 5. In a Noetherian ring $A, \operatorname{Spec}(A)$ has only finitely many minimal elements $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n} ;$ in particular $\operatorname{Spec}(A)=\overline{\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}}$.

Proof. Since A is Noetherian, 0 is decomposable. So the set of minimal elements of $\operatorname{Spec}(A)$ is the same as the set of minimal elements of $\operatorname{Ass}(0)$. Hence there are only finitely many such ideals.

Suppose $V(\mathfrak{a})=\overline{\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}}$ and $\mathfrak{p} \in \operatorname{Spec}(A)$. Then there is i such that $\mathfrak{p}_{i} \subseteq \mathfrak{p}$. Hence $\mathfrak{p}\left|\mathfrak{p}_{i}\right| \mathfrak{a}$, which implies $\mathfrak{p} \in V(\mathfrak{a})$; and claim follows.

Integral extensions

Definition 6. (1) Suppose A is a subring of B; in this case we say B / A is a ring extension.
(2) We say $b \in B$ is integral over A if there is a monic polynomial $f(x):=$ $\sum_{i=0}^{n} a_{i} x^{i} \in A[x]$ such that $f(b)=0$; that means $\sum_{i=0}^{n} a_{i} b^{i}=0$.
(3) We say B / A is an integral extension if any $b \in B$ is integral over A.

Proposition 7. Suppose A is a subring of B; the following statements are equivalent:
(1) $b \in B$ is integral over A.
(2) $A[b]$ is a finitely generated A-module.
(3) There is a subring C of B such that $A[b] \subseteq C$ and C is a finitely generated A-module.
(4) There is a faithful $A[b]$-module M that is a finitely generated A-module.

Recall. Suppose M is an R-module. Then $\operatorname{Ann}(M):=\{r \in R \mid \forall x \in M, r x=$ $0\}$ is an ideal of R; and we say M is a faithful R-module if $\operatorname{Ann}(M)=0$. For a commutative ring $R, r \mapsto l_{r}$, where $l_{r}(x):=r x$ defines a ring homomorphism from R to $\operatorname{End}_{R}(M)$ and its kernel is $\operatorname{Ann}(M)$.

Proof. (1) $\Rightarrow(2)$ Suppose $f(x) \in A[x]$ is a monic polynomial and $f(b)=0$. For any $g(x) \in A[x]$, by long division (notice that since $f(x)$ is monic, the process of long division is feasible), there are $q(x), r(x) \in A[x]$ such that $g(x)=f(x) q(x)+r(x)$ and $\operatorname{deg} r<\operatorname{deg} f$. Hence $g(b)=r(b)=\sum_{i=0}^{\operatorname{deg} f-1} a_{i} b^{i}$ for some $a_{i} \in A$; therefore $A[b]=\sum_{i=0}^{\operatorname{deg} f-1} A b^{i}$, which means $A[b]$ is generated by $\left\{1, b, \ldots, b^{\operatorname{deg} f-1}\right\}$ as an A-module.
$(2) \Rightarrow(3)$ Let $C:=A[b]$.
$(3) \Rightarrow(4)$ Let $M:=C$; notice that for any $r \in A[b], r \cdot 1=r$ implies that C is a faithful $A[b]$-module.
$(4) \Rightarrow(1)$ Let $l_{b}: M \rightarrow M, l_{b}(x):=b x$. Since $A[b]$ is commutative, $l_{b} \in$ $\operatorname{End}_{A}(M)$. Since M is a finitely generated A-module, there are $a_{i} \in A$ such that

$$
l_{b}^{n}+\bar{a}_{n-1} l_{b}^{n-1}+\cdots+\bar{a}_{1} l_{b}+\bar{a}_{0}=0
$$

in $\operatorname{End}_{A}(R)$, where $\bar{a}_{i}:=l_{a_{i}}{ }^{1}$. This means

$$
b^{n}+a_{n-1} b^{n-1}+\cdots+a_{0} \in \operatorname{Ann}(M)=0 ;
$$

and claim follows.

Integral closure

Lemma 8. Suppose B / A is a ring extension, $b_{1}, \ldots, b_{n} \in B$ are integral over A. Then $A\left[b_{1}, \ldots, b_{n}\right]$ is a finitely generated A-module.

[^0]$A\left[b_{1}, \ldots, b_{n}\right]$ is the subring of B that is generated by A and b_{i} 's. This can be viewed as the image of evaluation at $\left(b_{1}, \ldots, b_{n}\right)$:
$$
\phi: A\left[x_{1}, \ldots, x_{n}\right] \rightarrow B, \phi\left(f\left(x_{1}, \ldots, x_{n}\right)\right):=f\left(b_{1}, \ldots, b_{n}\right) .
$$

Proof. Since b_{i} 's are integral over A, there are monic polynomials $f_{i}(x) \in A[x]$ such that $f_{i}\left(b_{i}\right)=0$. By induction on n, we prove that $A\left[b_{1}, \ldots, b_{n}\right]$ is generated by $\left\{b_{1}^{i_{1}} \cdots b_{n}^{i_{n}} \mid 0 \leq i_{1}<\operatorname{deg} f_{1}, \ldots, 0 \leq i_{n}<\operatorname{deg} f_{n}\right\}$. We proceed by induction on n; we have already proved the base of induction. So we focus on the induction step. For $g \in A\left[x_{1}, \ldots, x_{n+1}\right]$, there are polynomials $g_{i} \in A\left[x_{1}, \ldots, x_{n}\right]$ such that $g=\sum_{i=0}^{m} g_{i} x_{n+1}^{i}$. By the induction hypothesis, there are $a_{i, \mathbf{j}} \in A$ such that

$$
g_{i}\left(b_{1}, \ldots, b_{n}\right)=\sum_{\mathbf{j} \in\left[0 . . \operatorname{deg} f_{1}\right) \times \cdots\left[0 . . \operatorname{deg} f_{n}\right)} a_{i, \mathbf{j}} \mathbf{b}_{1}^{j_{1}} \cdots b_{n}^{j_{n}} .
$$

Hence

$$
\begin{aligned}
g\left(b_{1}, \ldots, b_{n+1}\right) & =\sum_{i=0}^{m} g_{i}\left(b_{1}, \ldots, b_{n}\right) b_{n+1}^{i}=\sum_{i=0}^{m} \sum_{\mathbf{j}} a_{i, \mathbf{j}} b_{1}^{j_{1}} \cdots b_{n}^{j_{n}} b_{n+1}^{i} \\
& =\sum_{\mathbf{j}} b_{1}^{j_{1}} \cdots b_{n}^{j_{n}} \underbrace{\left.\sum_{i=0}^{m} a_{i, \mathbf{j}} b_{n+1}^{i}\right)}_{\in A\left[b_{n+1}\right]=\sum_{j=0}^{\operatorname{deg} f_{n+1}-1}} \\
& =\sum_{\mathbf{j}} b_{1}^{j_{1}} \cdots b_{n}^{j_{n}}\left(\sum_{j_{n+1}=0}^{\operatorname{deg} f_{n+1}-1} a_{\mathbf{j}, j_{n+1}}^{\prime} b_{n+1}^{j_{n+1}}\right),
\end{aligned}
$$

for some $a_{\mathbf{j}, j_{n+1}}^{\prime} \in A\left(\operatorname{and} \mathbf{j} \in\left[0 . . \operatorname{deg} f_{1}\right) \times \cdots\left[0 . . \operatorname{deg} f_{n}\right)\right)$; and claim follows.
Corollary 9. Suppose B / A is a ring extension. Let

$$
C:=\{b \in B \mid b \text { is integral over } A\} .
$$

Then C is a subring of B.
Definition. C is called the integral closure of A in B. We say A is integrally closed in B if $C=A$.

Proof. Suppose $b_{1}, b_{2} \in C$; then by the previous lemma, $A\left[b_{1}, b_{2}\right]$ is a finitely generated A-module. Hence by Part (3) of Proposition 7, we have that any
element of $A\left[b_{1}, b_{2}\right]$ is integral over A. Therefore $b_{1} \pm b_{2}$ and $b_{1} b_{2}$ are integral over A, which means $b_{1} \pm b_{2}, b_{1} b_{2} \in C$. Thus C is a subring of B.

Definition 10. An integral domain D is called integrally closed if it is integrally closed in its field of fractions.

Example 11. Because of the rational root criterion a UFD is integrally closed.
Remark. We will show that being integrally closed is a local property; but we have seen that being a UFD is not a local property. This makes being integrally closed a better "geometric" property.

Lemma 12. Suppose B / A and C / B are integral extensions; then C / A is an integral extension.

Proof. For $c \in C$, there are b_{i} 's in B such that

$$
c^{n}+b_{n-1} c^{n-1}+\cdots+b_{1} c+b_{0}=0
$$

So c is integral over $A\left[b_{0}, \ldots, b_{n-1}\right]$, which implies that

$$
A\left[b_{0}, \ldots, b_{n-1}, c\right]=\sum_{j=0}^{k} A\left[b_{0}, \ldots, b_{n-1}\right] c^{j}
$$

for some k. Since b_{i} 's are integral over A, by an earlier lemma we have

$$
A\left[b_{0}, \ldots, b_{n-1}\right]=\sum_{\mathbf{j} \in J} A b_{0}^{j_{0}} \cdots b_{n-1}^{j_{n-1}}
$$

for some finite set J. Overall we get

$$
A\left[b_{0}, \ldots, b_{n-1}, c\right]=\sum_{j=0}^{k} \sum_{\mathbf{j} \in J} A b_{0}^{j_{0}} \cdots b_{n-1}^{j_{n-1} c^{j}}
$$

which implies that $A\left[b_{0}, \ldots, b_{n-1}, c\right]$ is a finitely generated A-module. Thus another application of Proposition 7 implies that c is integral over A; and claim follows.

Corollary 13. Suppose B / A is a ring extension and C is the integral closure of A in B; then C is integrally closed in B.

Proof. Let \bar{C} be the integral closure of C in B. Then \bar{C} / C and C / A are integral. Hence \bar{C} / A is integral, which implies that $\bar{C} \subseteq C$. Therefore $\bar{C}=C$.

[^0]: ${ }^{1}$ We have proved such a result earlier, based on this result we showed Nakayama's lemma.

