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INTEGRAL EXTENSION, GOING TO A FACTOR RING, AND LOCALIZATION

Lemma 1. Suppose B/A is an integral extension.
(1) For b < B, A/b® — B/b is integral, where b® =b N A.
(2) For a multiplicatively closed subset S of A, ST'A < S™1A is integral.

Proof. (1) For any b € B, there is a monic polynomial f(z) € A[z]| such that
f(b) =0. Then 7(f)(n(b)) = 0, where 7 is induced by the natural quotient map
B — B/b.

(2) For any b € B, there is a monic polynomial f(z) € A[x] such that f(b) = 0.

Suppose f(z) = 2" + a,_ 12" + -+ - + ag; then we have
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which implies that £ is integral over S™'A (coefficient of (%) is -2 ). O
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Proposition 2. Suppose B/A is a ring extension and C' is the integral closure
of A in B. Then S7'C is the integral closure of ST*A in S™'B, where S is a
multiplicatively closed subset of A..

Proof. Suppose C is the integral closure of S™'A in S™'B. Then by the previous
lemma, we have that S~'C is a subring of C. Suppose %

that means there are a; € A and s; € S such that
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This implies that for some s” € S such that

is integral over S~1A;
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where s} := s+ S;_18i41 - 5,1 and 8 =[]\ s;. Hence
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which implies that s”s'b is integral over A. Therefore s”s'b € C'. Thus g = jles’

S~1C; and claim follows. O

BEING INTEGRALLY CLOSED IS A LOCAL PROPERTY

Theorem 3. Suppose D is an integral domain. Then the following statements

are equivalent:

(1) D is integrally closed.
(2) For any p € Spec(D), D, is integrally closed.
(3) For any m € Max(D), Dy, is integrally closed.

Proof. (1)=(2) Suppose K is the field of fractions of D. Then the integral closure
of D in K is D. Hence by the previous proposition, D, is the integral closure of
D, in S;'K = K; and claim follows.

(2)=(3) is clear.

(3)=(1) Suppose C is the integral closure of D in K, where K is the field of
fractions of D. Then by the previous proposition, for any m € Max(D), S 'C
is the integral closure of Dy, in K where S, := D \ m. By our assumption, we
have that S;'C = S;'D for any m € Max(D). Think about C as a D-module;
so the injection ¢ : D — C,i(z) := x is a D-module homomorphism and for any
m € Max(D), i, is surjective. We have seen that this implies 7 is surjective (this
implies that (C/D)y, = 0 where C'/D is considered as a D-module; from here we
deduce that Ann(C'/D) = D). O

THE CONTRACTION MAP OF AN INTEGRAL EMBEDDING

Lemma 4. Suppose B/A is an integral extension, and B is an integral domain.

Then A is a field if and only if B is a field.

Proof. (=) For any b € B, A[b] is a finitely generated A-module; and so A[b] is
a finite dimensional A-algebra and it is an integral domain. This implies that
A[b] is a field. For x € A[b], let I, : Alb] — A[b],l.(y) := xy. Then [, is an
A-linear map. Since A[b] is an integral domain, [, is injective when z is not
zero. An injective linear map on a finite dimensional vector space is invertible.
Hence [, is surjective, which implies that x is a unit; and claim follows. Hence
b=! € A[b] C B, and claim follows.
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(<) For a € A, there is a=! € B. Since B/A is integral, there are a; € A such
that

a "+ a1 44 ag = 0.
Hence
a = —(ap_1 + apoa+---+aa" ") € A

and claim follows. l
Corollary 5. Suppose f : A — B is integral; then for any q € Spec(B),
1*(q) € Max(A) & q € Max(B).

Proof. For any q € Spec(B), A/f*(q) — B/q is an integral extension and B/q is
an integral domain. Hence by the previous lemma, A/f*(q) is a field if and only

if B/q is a field; and claim follows as we have
f*(q) € Max(A) < A/f*(q) is a field & B/q is a field < q € Max(B).
O

Proposition 6. Suppose f : A < B is integral; then f* : Spec(B) — Spec(A) is
onto, and f*(Max(B)) = Max(A).

Proof. Suppose p € A; and let S, := A\ p. Then f, : S;'A < S B is integral.
Hence by the previous corollary fi(Max(S;'B)) € Max(S;'A) = {S; 'p}. This
implies that there is a prime ideal q of B such that

(1) N S, = @; (this implies qN A C p.)

(2) S;'anS;'A = S 'p. (this implies for any x € p, ¥ € S;'q; and so = € g

as Sy(q) = q.)
Hence f*(q) = qN A = p, which implies that f* is surjective.
To show the second part, we notice that we have already proved f*(Max(B)) C

Max(A). For m € Max(A), there is q € Spec(B) such that f*(q) = m as f* is
onto. By the previous corollary, since f*(q) is maximal, we have that q is maximal;

and claim follows. 0

Corollary 7. Suppose f: A < B is integral; then f*: Spec(B) — Spec(A) is a
closed map; in fact f*(V (b)) =V (b°) for any b < B.
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Proof. For b<B, let f : A/b¢ — B/b, f(a+b) := f(a)+b. Then f is integral; and

so f is surjective. Let mp : B — B/b and mye : A — A/b¢ be the natural quotient

maps; then we have the following commuting diagram consisting of bijections and
Spec(B/b) T V(b)

onto maps: l}* lf* . This implies that f*(V (b)) = V(b°); and

*

Spec(A/b) SRLN V(b°)

claim follows. O

GOING-UP THEOREM

Theorem 8. Suppose f : A — B is integral, po C p1 S -+ € p, s a chain in
Spec(A), and 4o S q1 S -+ C G 8 a chain in Spec(B) such that f*(q;) = p°.
Then there are Qi1 S -+  qy in Spec(B) such that f*(q;) = p; and qum S Q1

~

Going-Up
Proof. Inductively on m, we show the existence of ,,,+1. The base case of m = —1

is a consequence of surjectivity of f*. So we focus on the induction step. By the
previous corollary, f*(V(q,,)) = V(pm); and so there is g1 € V(q,,) such that
f (@mt1) = Pt as pmi1 € V(pm). Since f*(qm+1) # f*(dm), We have that

Qm 7 qm+1; and claim follows. O

Next we show dim(f*)~!(p) = 0 for any p € Spec(A) if f : A < B is integral:

Lemma 9. Suppose f : A — B is integral, p € Spec(A), q1 C g2 € Spec(B),
and f*(q1) = f*(a2) = p. Then g1 = qs.

We will be using the above lemma and Going-Up Theorem to show dim A =
dim B is B/A is integral.

(We will continue in the next lecture.)



