MATH200C, LECTURE 11

GOLSEFIDY

Integral extension, going to a factor Ring, and localization
Lemma 1. Suppose B / A is an integral extension.
(1) For $\mathfrak{b} \unlhd B, A / \mathfrak{b}^{c} \hookrightarrow B / \mathfrak{b}$ is integral, where $\mathfrak{b}^{c}=\mathfrak{b} \cap A$.
(2) For a multiplicatively closed subset S of $A, S^{-1} A \hookrightarrow S^{-1} A$ is integral.

Proof. (1) For any $b \in B$, there is a monic polynomial $f(x) \in A[x]$ such that $f(b)=0$. Then $\pi(f)(\pi(b))=0$, where π is induced by the natural quotient map $B \rightarrow B / \mathfrak{b}$.
(2) For any $b \in B$, there is a monic polynomial $f(x) \in A[x]$ such that $f(b)=0$. Suppose $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$; then we have

$$
b^{n}+a_{n-1} b^{n-1}+\cdots+a_{0}=0 \Rightarrow\left(\frac{b}{s}\right)^{n}+\frac{a_{n-1}}{s}\left(\frac{b}{s}\right)^{n-1}+\cdots+\frac{a_{0}}{s^{n}}=0
$$

which implies that $\frac{b}{s}$ is integral over $S^{-1} A$ (coefficient of $\left(\frac{b}{s}\right)^{i}$ is $\frac{a_{i}}{s^{n-i}}$).
Proposition 2. Suppose B / A is a ring extension and C is the integral closure of A in B. Then $S^{-1} C$ is the integral closure of $S^{-1} A$ in $S^{-1} B$, where S is a multiplicatively closed subset of A..

Proof. Suppose \bar{C} is the integral closure of $S^{-1} A$ in $S^{-1} B$. Then by the previous lemma, we have that $S^{-1} C$ is a subring of \bar{C}. Suppose $\frac{b}{s}$ is integral over $S^{-1} A$; that means there are $a_{i} \in A$ and $s_{i} \in S$ such that

$$
\left(\frac{b}{s}\right)^{n}+\frac{a_{n-1}}{s_{n-1}}\left(\frac{b}{s}\right)^{n-1}+\cdots+\frac{a_{0}}{s_{0}}=0
$$

This implies that for some $s^{\prime \prime} \in S$ such that

$$
s^{\prime \prime}(s^{\prime} b^{n}+\underbrace{s_{n-1}^{\prime} s a_{n-1}}_{a_{n-1}^{\prime}} b^{n-1}+\cdots+\underbrace{s_{i}^{\prime} s^{n-i} a_{i}}_{a_{i}^{\prime}} b^{i}+\cdots+\underbrace{s_{0}^{\prime} s^{n} a_{0}}_{a_{0}^{\prime}})=0
$$

where $s_{i}^{\prime}:=s_{0} \cdots s_{i-1} s_{i+1} \cdots s_{n-1}$ and $s^{\prime}:=\prod_{i=0}^{n-1} s_{i}$. Hence

$$
\left(s^{\prime \prime} s^{\prime} b\right)^{n}+a_{n-1}^{\prime}\left(s^{\prime \prime} s^{\prime} b\right)^{n-1}+\cdots+\left(s^{\prime \prime} s^{\prime}\right)^{n-i-1} a_{i}\left(s^{\prime} b\right)^{i}+\cdots+\left(s^{\prime \prime} s^{\prime}\right)^{n-1} a_{0}^{\prime}=0
$$

which implies that $s^{\prime \prime} s^{\prime} b$ is integral over A. Therefore $s^{\prime \prime} s^{\prime} b \in C$. Thus $\frac{b}{s}=\frac{s^{\prime \prime} s^{\prime} b}{s^{\prime \prime} s^{\prime} s} \in$ $S^{-1} C$; and claim follows.

Being integrally closed is a local property

Theorem 3. Suppose D is an integral domain. Then the following statements are equivalent:
(1) D is integrally closed.
(2) For any $\mathfrak{p} \in \operatorname{Spec}(D), D_{\mathfrak{p}}$ is integrally closed.
(3) For any $\mathfrak{m} \in \operatorname{Max}(D), D_{\mathfrak{m}}$ is integrally closed.

Proof. (1) $\Rightarrow(2)$ Suppose K is the field of fractions of D. Then the integral closure of D in K is D. Hence by the previous proposition, $D_{\mathfrak{p}}$ is the integral closure of $D_{\mathfrak{p}}$ in $S_{\mathfrak{p}}^{-1} K=K$; and claim follows.
$(2) \Rightarrow(3)$ is clear.
$(3) \Rightarrow(1)$ Suppose C is the integral closure of D in K, where K is the field of fractions of D. Then by the previous proposition, for any $\mathfrak{m} \in \operatorname{Max}(D), S_{\mathfrak{m}}^{-1} C$ is the integral closure of $D_{\mathfrak{m}}$ in K where $S_{\mathfrak{m}}:=D \backslash \mathfrak{m}$. By our assumption, we have that $S_{\mathfrak{m}}^{-1} C=S_{\mathfrak{m}}^{-1} D$ for any $\mathfrak{m} \in \operatorname{Max}(D)$. Think about C as a D-module; so the injection $i: D \rightarrow C, i(x):=x$ is a D-module homomorphism and for any $\mathfrak{m} \in \operatorname{Max}(D), i_{\mathfrak{m}}$ is surjective. We have seen that this implies i is surjective (this implies that $(C / D)_{\mathfrak{m}}=0$ where C / D is considered as a D-module; from here we deduce that $\operatorname{Ann}(C / D)=D)$.

The contraction map of an integral embedding

Lemma 4. Suppose B / A is an integral extension, and B is an integral domain. Then A is a field if and only if B is a field.

Proof. (\Rightarrow) For any $b \in B, A[b]$ is a finitely generated A-module; and so $A[b]$ is a finite dimensional A-algebra and it is an integral domain. This implies that $A[b]$ is a field. For $x \in A[b]$, let $l_{x}: A[b] \rightarrow A[b], l_{x}(y):=x y$. Then l_{x} is an A-linear map. Since $A[b]$ is an integral domain, l_{x} is injective when x is not zero. An injective linear map on a finite dimensional vector space is invertible. Hence l_{x} is surjective, which implies that x is a unit; and claim follows. Hence $b^{-1} \in A[b] \subseteq B$, and claim follows.
(\Leftarrow) For $a \in A$, there is $a^{-1} \in B$. Since B / A is integral, there are $a_{i} \in A$ such that

$$
a^{-n}+a_{n-1} a^{-(n-1)}+\cdots+a_{0}=0
$$

Hence

$$
a^{-1}=-\left(a_{n-1}+a_{n-2} a+\cdots+a_{0} a^{n-1}\right) \in A
$$

and claim follows.
Corollary 5. Suppose $f: A \hookrightarrow B$ is integral; then for any $\mathfrak{q} \in \operatorname{Spec}(B)$,

$$
f^{*}(\mathfrak{q}) \in \operatorname{Max}(A) \Leftrightarrow \mathfrak{q} \in \operatorname{Max}(B)
$$

Proof. For any $\mathfrak{q} \in \operatorname{Spec}(B), A / f^{*}(\mathfrak{q}) \hookrightarrow B / \mathfrak{q}$ is an integral extension and B / \mathfrak{q} is an integral domain. Hence by the previous lemma, $A / f^{*}(\mathfrak{q})$ is a field if and only if B / \mathfrak{q} is a field; and claim follows as we have
$f^{*}(\mathfrak{q}) \in \operatorname{Max}(A) \Leftrightarrow A / f^{*}(\mathfrak{q})$ is a field $\Leftrightarrow B / \mathfrak{q}$ is a field $\Leftrightarrow \mathfrak{q} \in \operatorname{Max}(B)$.

Proposition 6. Suppose $f: A \hookrightarrow B$ is integral; then $f^{*}: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ is onto, and $f^{*}(\operatorname{Max}(B))=\operatorname{Max}(A)$.

Proof. Suppose $\mathfrak{p} \in A$; and let $S_{\mathfrak{p}}:=A \backslash \mathfrak{p}$. Then $f_{\mathfrak{p}}: S_{\mathfrak{p}}^{-1} A \hookrightarrow S_{\mathfrak{p}}^{-1} B$ is integral. Hence by the previous corollary $f_{\mathfrak{p}}^{*}\left(\operatorname{Max}\left(S_{\mathfrak{p}}^{-1} B\right)\right) \subseteq \operatorname{Max}\left(S_{\mathfrak{p}}^{-1} A\right)=\left\{S_{\mathfrak{p}}^{-1} \mathfrak{p}\right\}$. This implies that there is a prime ideal \mathfrak{q} of B such that
(1) $\mathfrak{q} \cap S_{\mathfrak{p}}=\varnothing$; (this implies $\mathfrak{q} \cap A \subseteq \mathfrak{p}$.)
(2) $S_{\mathfrak{p}}^{-1} \mathfrak{q} \cap S_{\mathfrak{p}}^{-1} A=S_{\mathfrak{p}}^{-1} \mathfrak{p}$. (this implies for any $x \in \mathfrak{p}, \frac{x}{1} \in S_{\mathfrak{p}}^{-1} \mathfrak{q}$; and so $x \in \mathfrak{q}$ as $S_{\mathfrak{p}}(\mathfrak{q})=\mathfrak{q}$.)

Hence $f^{*}(\mathfrak{q})=\mathfrak{q} \cap A=\mathfrak{p}$, which implies that f^{*} is surjective.
To show the second part, we notice that we have already proved $f^{*}(\operatorname{Max}(B)) \subseteq$ $\operatorname{Max}(A)$. For $\mathfrak{m} \in \operatorname{Max}(A)$, there is $\mathfrak{q} \in \operatorname{Spec}(B)$ such that $f^{*}(\mathfrak{q})=\mathfrak{m}$ as f^{*} is onto. By the previous corollary, since $f^{*}(\mathfrak{q})$ is maximal, we have that \mathfrak{q} is maximal; and claim follows.

Corollary 7. Suppose $f: A \hookrightarrow B$ is integral; then $f^{*}: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ is a closed map; in fact $f^{*}(V(\mathfrak{b}))=V\left(\mathfrak{b}^{c}\right)$ for any $\mathfrak{b} \unlhd B$.

Proof. For $\mathfrak{b} \unlhd B$, let $\bar{f}: A / \mathfrak{b}^{c} \rightarrow B / \mathfrak{b}, \bar{f}\left(a+\mathfrak{b}^{c}\right):=f(a)+\mathfrak{b}$. Then \bar{f} is integral; and so \bar{f}^{*} is surjective. Let $\pi_{\mathfrak{b}}: B \rightarrow B / \mathfrak{b}$ and $\pi_{\mathfrak{b}^{c}}: A \rightarrow A / \mathfrak{b}^{c}$ be the natural quotient maps; then we have the following commuting diagram consisting of bijections and
 claim follows.

Going-Up theorem

Theorem 8. Suppose $f: A \hookrightarrow B$ is integral, $\mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \cdots \subsetneq \mathfrak{p}_{n}$ is a chain in $\operatorname{Spec}(A)$, and $\mathfrak{q}_{0} \subsetneq \mathfrak{q}_{1} \subsetneq \cdots \subsetneq \mathfrak{q}_{m}$ is a chain in $\operatorname{Spec}(B)$ such that $f^{*}\left(\mathfrak{q}_{i}\right)=\mathfrak{p}^{i}$. Then there are $\underbrace{\mathfrak{q}_{m+1} \subsetneq \cdots \subsetneq \mathfrak{q}_{n}}_{\overrightarrow{\text { Going-Up }}}$ in $\operatorname{Spec}(B)$ such that $f^{*}\left(\mathfrak{q}_{i}\right)=\mathfrak{p}_{i}$ and $\mathfrak{q}_{m} \subsetneq \mathfrak{q}_{m+1}$.

Proof. Inductively on m, we show the existence of \mathfrak{q}_{m+1}. The base case of $m=-1$ is a consequence of surjectivity of f^{*}. So we focus on the induction step. By the previous corollary, $f^{*}\left(V\left(\mathfrak{q}_{m}\right)\right)=V\left(\mathfrak{p}_{m}\right)$; and so there is $\mathfrak{q}_{m+1} \in V\left(\mathfrak{q}_{m}\right)$ such that $f^{*}\left(\mathfrak{q}_{m+1}\right)=\mathfrak{p}_{m+1}$ as $\mathfrak{p}_{m+1} \in V\left(\mathfrak{p}_{m}\right)$. Since $f^{*}\left(\mathfrak{q}_{m+1}\right) \neq f^{*}\left(\mathfrak{q}_{m}\right)$, we have that $\mathfrak{q}_{m} \neq \mathfrak{q}_{m+1}$; and claim follows.

Next we show $\operatorname{dim}\left(f^{*}\right)^{-1}(\mathfrak{p})=0$ for any $\mathfrak{p} \in \operatorname{Spec}(A)$ if $f: A \hookrightarrow B$ is integral:
Lemma 9. Suppose $f: A \hookrightarrow B$ is integral, $\mathfrak{p} \in \operatorname{Spec}(A), \mathfrak{q}_{1} \subseteq \mathfrak{q}_{2} \in \operatorname{Spec}(B)$, and $f^{*}\left(\mathfrak{q}_{1}\right)=f^{*}\left(\mathfrak{q}_{2}\right)=\mathfrak{p}$. Then $\mathfrak{q}_{1}=\mathfrak{q}_{2}$.

We will be using the above lemma and Going-Up Theorem to show $\operatorname{dim} A=$ $\operatorname{dim} B$ is B / A is integral.
(We will continue in the next lecture.)

