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Integral extension, going to a factor ring, and localization

Lemma 1. Suppose B/A is an integral extension.

(1) For b⊴ B, A/bc ↩→ B/b is integral, where bc = b ∩ A.

(2) For a multiplicatively closed subset S of A, S−1A ↩→ S−1A is integral.

Proof. (1) For any b ∈ B, there is a monic polynomial f(x) ∈ A[x] such that

f(b) = 0. Then π(f)(π(b)) = 0, where π is induced by the natural quotient map

B → B/b.

(2) For any b ∈ B, there is a monic polynomial f(x) ∈ A[x] such that f(b) = 0.

Suppose f(x) = xn + an−1x
n−1 + · · ·+ a0; then we have

bn + an−1b
n−1 + · · ·+ a0 = 0 ⇒


b
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n

+
an−1

s


b

s

n−1

+ · · ·+ a0
sn

= 0,

which implies that b
s
is integral over S−1A (coefficient of ( b

s
)i is ai

sn−i ). □

Proposition 2. Suppose B/A is a ring extension and C is the integral closure

of A in B. Then S−1C is the integral closure of S−1A in S−1B, where S is a

multiplicatively closed subset of A..

Proof. Suppose C is the integral closure of S−1A in S−1B. Then by the previous

lemma, we have that S−1C is a subring of C. Suppose b
s
is integral over S−1A;

that means there are ai ∈ A and si ∈ S such that
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+
an−1

sn−1


b

s

n−1

+ · · ·+ a0
s0

= 0.

This implies that for some s′′ ∈ S such that

s′′(s′bn + s′n−1san−1  
a′n−1

bn−1 + · · ·+ s′is
n−iai  
a′i

bi + · · ·+ s′0s
na0  
a′0

) = 0

where s′i := s0 · · · si−1si+1 · · · sn−1 and s′ :=
n−1

i=0 si. Hence

(s′′s′b)n + a′n−1(s
′′s′b)n−1 + · · ·+ (s′′s′)n−i−1ai(s

′b)i + · · ·+ (s′′s′)n−1a′0 = 0,
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which implies that s′′s′b is integral over A. Therefore s′′s′b ∈ C. Thus b
s
= s′′s′b

s′′s′s ∈
S−1C; and claim follows. □

Being integrally closed is a local property

Theorem 3. Suppose D is an integral domain. Then the following statements

are equivalent:

(1) D is integrally closed.

(2) For any p ∈ Spec(D), Dp is integrally closed.

(3) For any m ∈ Max(D), Dm is integrally closed.

Proof. (1)⇒(2) Suppose K is the field of fractions of D. Then the integral closure

of D in K is D. Hence by the previous proposition, Dp is the integral closure of

Dp in S−1
p K = K; and claim follows.

(2)⇒(3) is clear.

(3)⇒(1) Suppose C is the integral closure of D in K, where K is the field of

fractions of D. Then by the previous proposition, for any m ∈ Max(D), S−1
m C

is the integral closure of Dm in K where Sm := D \ m. By our assumption, we

have that S−1
m C = S−1

m D for any m ∈ Max(D). Think about C as a D-module;

so the injection i : D → C, i(x) := x is a D-module homomorphism and for any

m ∈ Max(D), im is surjective. We have seen that this implies i is surjective (this

implies that (C/D)m = 0 where C/D is considered as a D-module; from here we

deduce that Ann(C/D) = D). □

The contraction map of an integral embedding

Lemma 4. Suppose B/A is an integral extension, and B is an integral domain.

Then A is a field if and only if B is a field.

Proof. (⇒) For any b ∈ B, A[b] is a finitely generated A-module; and so A[b] is

a finite dimensional A-algebra and it is an integral domain. This implies that

A[b] is a field. For x ∈ A[b], let lx : A[b] → A[b], lx(y) := xy. Then lx is an

A-linear map. Since A[b] is an integral domain, lx is injective when x is not

zero. An injective linear map on a finite dimensional vector space is invertible.

Hence lx is surjective, which implies that x is a unit; and claim follows. Hence

b−1 ∈ A[b] ⊆ B, and claim follows.



MATH200C, LECTURE 11 3

(⇐) For a ∈ A, there is a−1 ∈ B. Since B/A is integral, there are ai ∈ A such

that

a−n + an−1a
−(n−1) + · · ·+ a0 = 0.

Hence

a−1 = −(an−1 + an−2a+ · · ·+ a0a
n−1) ∈ A;

and claim follows. □

Corollary 5. Suppose f : A ↩→ B is integral; then for any q ∈ Spec(B),

f ∗(q) ∈ Max(A) ⇔ q ∈ Max(B).

Proof. For any q ∈ Spec(B), A/f ∗(q) ↩→ B/q is an integral extension and B/q is

an integral domain. Hence by the previous lemma, A/f ∗(q) is a field if and only

if B/q is a field; and claim follows as we have

f ∗(q) ∈ Max(A) ⇔ A/f ∗(q) is a field ⇔ B/q is a field ⇔ q ∈ Max(B).

□

Proposition 6. Suppose f : A ↩→ B is integral; then f ∗ : Spec(B) → Spec(A) is

onto, and f ∗(Max(B)) = Max(A).

Proof. Suppose p ∈ A; and let Sp := A \ p. Then fp : S
−1
p A ↩→ S−1

p B is integral.

Hence by the previous corollary f ∗
p (Max(S−1

p B)) ⊆ Max(S−1
p A) = {S−1

p p}. This

implies that there is a prime ideal q of B such that

(1) q ∩ Sp = ∅; (this implies q ∩ A ⊆ p.)

(2) S−1
p q∩ S−1

p A = S−1
p p. (this implies for any x ∈ p, x

1
∈ S−1

p q; and so x ∈ q

as Sp(q) = q.)

Hence f ∗(q) = q ∩ A = p, which implies that f ∗ is surjective.

To show the second part, we notice that we have already proved f ∗(Max(B)) ⊆
Max(A). For m ∈ Max(A), there is q ∈ Spec(B) such that f ∗(q) = m as f ∗ is

onto. By the previous corollary, since f ∗(q) is maximal, we have that q is maximal;

and claim follows. □

Corollary 7. Suppose f : A ↩→ B is integral; then f ∗ : Spec(B) → Spec(A) is a

closed map; in fact f ∗(V (b)) = V (bc) for any b⊴ B.
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Proof. For b⊴B, let f : A/bc → B/b, f(a+bc) := f(a)+b. Then f is integral; and

so f
∗
is surjective. Let πb : B → B/b and πbc : A → A/bc be the natural quotient

maps; then we have the following commuting diagram consisting of bijections and

onto maps:

Spec(B/b) V (b)

Spec(A/bc) V (bc)

π∗
b

f
∗ f∗

π∗
bc

. This implies that f ∗(V (b)) = V (bc); and

claim follows. □

Going-Up theorem

Theorem 8. Suppose f : A ↩→ B is integral, p0 ⊊ p1 ⊊ · · · ⊊ pn is a chain in

Spec(A), and q0 ⊊ q1 ⊊ · · · ⊊ qm is a chain in Spec(B) such that f ∗(qi) = pi.

Then there are qm+1 ⊊ · · · ⊊ qn  
−−−−−−→
Going-Up

in Spec(B) such that f ∗(qi) = pi and qm ⊊ qm+1.

Proof. Inductively onm, we show the existence of qm+1. The base case ofm = −1

is a consequence of surjectivity of f ∗. So we focus on the induction step. By the

previous corollary, f ∗(V (qm)) = V (pm); and so there is qm+1 ∈ V (qm) such that

f ∗(qm+1) = pm+1 as pm+1 ∈ V (pm). Since f ∗(qm+1) ∕= f ∗(qm), we have that

qm ∕= qm+1; and claim follows. □

Next we show dim(f ∗)−1(p) = 0 for any p ∈ Spec(A) if f : A ↩→ B is integral:

Lemma 9. Suppose f : A ↩→ B is integral, p ∈ Spec(A), q1 ⊆ q2 ∈ Spec(B),

and f ∗(q1) = f ∗(q2) = p. Then q1 = q2.

We will be using the above lemma and Going-Up Theorem to show dimA =

dimB is B/A is integral.

(We will continue in the next lecture.)


