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Dimension and integral extension

Lemma 1. Suppose f : A ↩→ B is integral, p ∈ Spec(A), and q1 ⊆ q2 ∈
(f ∗)−1(p). Then q1 = q2.

Proof. Since f : A ↩→ B is integral, f : A/f ∗(q1) ↩→ B/q1 is integral; and we

have f
∗
(q2) = 0. It is enough to show q2 = 0. Suppose to the contrary that

a ∈ q2 := q2/q1 is not zero, and f(x) ∈ (A/p)[x] is the smallest positive degree

monic polynomial that has a as a zero; say f(x) = xn+an−1x
n−1+ · · ·+a0. Then

a0 = −a(an−1 + an−1a
n−2 + · · ·+ a1) ∈ q2 ∩ f(A/p);

and so a0 ∈ f
∗
(q2) = 0. This implies that a is a zero xn−1+an−1x

n−2+ · · ·+an−1,

which contradicts the way we chose f . □

Theorem 2. Suppose B/A is an integral extension. Then dimA = dimB.

Proof. Suppose q0 ⊊ q1 ⊊ · · · ⊊ qn is a chain in Spec(B). Then clearly f ∗(qi) ⊆
f ∗(qi+1) for any i; and by the previous lemma, equality cannot hold and so

f ∗(q0) ⊊ f ∗(q1) ⊊ · · · ⊊ f ∗(qn)

is a chain in Spec(A), which implies that dimB ≤ dimA.

For any chain p0 ⊊ p1 ⊊ · · · ⊊ pn in Spec(A), by the Going-Up Theorem there

is a chain

q0 ⊊ q1 ⊊ · · · ⊊ qn

in Spec(B) (such that f ∗(qi) = pi for any i). Hence dimA ≤ dimB; and claim

follows. □
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Integral over an ideal

So far we have proved that if f : A ↩→ B is integral, then f ∗ is onto and

closed, and its fibers have dimension 0. Next we want to show that under certain

additional conditions, f ∗ is also open, and get a better understanding of its fibers.

To this end, we start with a technical lemma, and we will see its importance later.

Suppose B/A is a ring extension and a ⊴ A. We say b ∈ B is integral over A

if there are ai ∈ a such that

bn + an−1b
n−1 + · · ·+ a0 = 0.

Lemma 3. Suppose B/A is a ring extension and C is the integral closure of A

in B. Suppose a⊴ A. Then

b ∈ B is integral over a ⇔ b ∈
√
ae

where ae is the extension of a in C; in particular if b1 and b2 are integral over a,

then so are b1 ± b2 and b1b2.

Proof. (⇒) Suppose b is integral over a; that means there are ai ∈ a such that

bn + an−1b
n−1 + · · ·+ a0 = 0. Hence b ∈ C and

bn = −(an−1b
n−1 + · · ·+ a0) ∈ ae,

which implies that b ∈
√
ae.

(⇐) Suppose b ∈
√
ae; then there are ci ∈ C, ai ∈ a, and n ∈ Z+ such that

(1) bn = c1a1 + · · ·+ cmam.

Let C := A[c1, . . . , cm]. Since ci’s are integral over A, C is a finitely generated

A-module. By (1) we have

lbn(C) ⊆ aC,

where φ := lbn : C → C, lbn(x) := bnx is an A-module homomorphism. Therefore

by a result that we proved earlier (which was used to show Nakayama’s lemma)

we have

φk + a′k−1φ
k−1 + · · ·+ a′0 = 0

in EndA(C) for some a′i ∈ a. This implies that

bnk + a′k−1b
n(k−1) + · · ·+ a′0 = 0
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for some a′i ∈ a; and claim follows. □

Minimal polynomial revisited

Lemma 4. Suppose B/A is an integral extension, B is an integral domain, A is

integrally closed, and F is the field of fractions of A. Suppose a ⊴ A and b ∈ B

is integral over a. Let

mb,F (x) = xm + cm−1x
m−1 + · · ·+ c0 ∈ F [x]

be the minimal polynomial of b over F . Then ci ∈
√
a for any i.

Proof. Since b is integral over a, there is f(x) = xn + an−1x
n−1 + · · ·+ a0 ∈ A[x]

such that ai ∈ a and f(b) = 0. Let E be a splitting field of f(x) over F , and C

be the integral closure of A in E. Then there are βi ∈ E such that β1 = b and

f(x) =
n

i=1(x− βi); in particular all βi’s are integral over a. Since f(b) = 0, we

have that mb,F (x)|f(x), which implies that all the zeros of mb,F (x) are integral

over a. Hence by the previous lemma all the coefficients of mb,F (x) are integral

over a; in particular ci’ are integral over A and clearly they are in F . As A is

integrally closed, we deduce that ci’s are in A. Altogether we have ci ∈ A and ci

is integral over a. So again by the previous lemma ci ∈
√
a; and claim follows. □

Going-Down Theorem

Proposition 5. Suppose B/A is an integral extension, B is an integral domain,

and A is integrally closed. Suppose p0 ⊊ p1 are in Spec(A) and q1 ∈ Spec(B) such

that q1 ∩A = p1. Then there is q0 ∈ Spec(B) such that q0 ⊆ q1 and q0 ∩A = p0.

Proof. We have to focus on primes ideals in q1; that means we need to localize

at q1. Let Sq1 := B \ q1 and Sp1 := A \ p1; notice that Sp1 = Sq1 ∩A. So we have

Ap1 ⊆ S−1
p1

B ⊆ Bq1 (and Ap1 ⊆ S−1
p1

B is an integral extension).

Claim. Let f : Ap1 → Bq1 . To prove the proposition, it is enough to show

that S−1
p1

p0 is in the image of f ∗.
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Proof of Claim. If f ∗(q0) = S−1
p1

p0, then there is q0 ∈ Spec(B) such that

q0 = S−1
q1

q0,

Sq1 ∩ q0 = ∅ (⇒ q0 ⊆ q1.)

S−1
q1

q0 ∩ S−1
p A = S−1

p p0 (x ∈ p0 ⇒
x

1
∈ S−1

q1
q0 ⇒ x ∈ q0,

x ∈ q0 ∩ A ⇒ x

1
∈ S−1

q1
q0 ∩ S−1

p A ⇒ x

1
∈ S−1

p1
p0 ⇒ x ∈ p0.)

And so p0 = q0 ∩ A and q0 ⊆ q1.

We have proved earlier that a prime ideal is in the image of f ∗ if and only if it is

a contracted ideal. This means it is enough to prove (S−1
p1

p0)
ec = S−1

p1
p0. Suppose

to the contrary a
s
∈ (S−1

p1
p0)

ec \ S−1
p1

p0; so we are assuming there are a ∈ A \ p0
and s ∈ Sp1 such that a

s
∈ p0Bq1 \ p0Ap1 . This means there are bi ∈ B, si ∈ Sq1 ,

and pi ∈ p0 such that

b

s
=



i

pi
bi
si
.

This implies that for some s′i, s
′ ∈ Sq1 we have

as′ =


i

s′ipibi ∈ pe0.

Hence as′ is integral over p0. Therefore by the previous lemma,

mas′,F (x) = xm + am−1x
m−1 + · · ·+ a0

for some ai ∈ p0 where F is the field of fractions of A. Notice that

ms′,F (x) =
1

an
mas′,F (ax),

as a ∈ A ⊆ F . We also notice that since s′ is integral over A, by the previous

lemma, ms′,F (x) ∈ A[x]; say ms′,F (x) = xm + a′m−1x
m−1 + · · ·+ a′0. Then

aia′m−i = am−i ∈ p0.

As a ∕∈ p0 and p0 is prime, we deduce that a′m−i ∈ p0. This means s′ is integral

over p0; and so

s′ ∈


pe0 ⊆


pe1 ⊆
√
q1 = q1,

which contradicts s′ ∈ Sq1 . □
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Theorem 6 (Going-Down). Suppose B/A is an integral extension, B is an in-

tegral domain, and A is integrally closed. Suppose

qm ⊊ · · · ⊊ qn ∈ Spec(B)

p0 ⊊ · · · ⊊ pm ⊊ · · · ⊊ pn ∈ Spec(A),

and qi ∩ A = pi. Then we can go down in the chain; that means there are

q0 ⊊ · · · qm−1 in Spec(B) such that qi ∩ A = pi.

Proof. One can easily defined qi’s inductively: for m = n + 1, one can use the

surjectivity of f ∗. And the induction step can be deduce by the above proposition.

□

We will see how Going-Down can help us to show f ∗ is open.


