MATH200C, LECTURE 12

GOLSEFIDY

Dimension and integral extension

Lemma 1. Suppose $f: A \hookrightarrow B$ is integral, $\mathfrak{p} \in \operatorname{Spec}(A)$, and $\mathfrak{q}_{1} \subseteq \mathfrak{q}_{2} \in$ $\left(f^{*}\right)^{-1}(\mathfrak{p})$. Then $\mathfrak{q}_{1}=\mathfrak{q}_{2}$.

Proof. Since $f: A \hookrightarrow B$ is integral, $\bar{f}: A / f^{*}\left(\mathfrak{q}_{1}\right) \hookrightarrow B / \mathfrak{q}_{1}$ is integral; and we have $\bar{f}^{*}\left(\overline{\mathfrak{q}}_{2}\right)=0$. It is enough to show $\overline{\mathfrak{q}}_{2}=0$. Suppose to the contrary that $\bar{a} \in \overline{\mathfrak{q}}_{2}:=\mathfrak{q}_{2} / \mathfrak{q}_{1}$ is not zero, and $f(x) \in(A / \mathfrak{p})[x]$ is the smallest positive degree monic polynomial that has \bar{a} as a zero; say $f(x)=x^{n}+\bar{a}_{n-1} x^{n-1}+\cdots+\bar{a}_{0}$. Then

$$
\bar{a}_{0}=-\bar{a}\left(\bar{a}^{n-1}+\bar{a}_{n-1} \bar{a}^{n-2}+\cdots+\bar{a}_{1}\right) \in \overline{\mathfrak{q}}_{2} \cap \bar{f}(A / \mathfrak{p}) ;
$$

and so $\bar{a}_{0} \in \bar{f}^{*}\left(\overline{\mathfrak{q}}_{2}\right)=0$. This implies that \bar{a} is a zero $x^{n-1}+\bar{a}_{n-1} x^{n-2}+\cdots+\bar{a}_{n-1}$, which contradicts the way we chose f.

Theorem 2. Suppose B / A is an integral extension. Then $\operatorname{dim} A=\operatorname{dim} B$.
Proof. Suppose $\mathfrak{q}_{0} \subsetneq \mathfrak{q}_{1} \subsetneq \cdots \subsetneq \mathfrak{q}_{n}$ is a chain in $\operatorname{Spec}(B)$. Then clearly $f^{*}\left(\mathfrak{q}_{i}\right) \subseteq$ $f^{*}\left(\mathfrak{q}_{i+1}\right)$ for any i; and by the previous lemma, equality cannot hold and so

$$
f^{*}\left(\mathfrak{q}_{0}\right) \subsetneq f^{*}\left(\mathfrak{q}_{1}\right) \subsetneq \cdots \subsetneq f^{*}\left(\mathfrak{q}_{n}\right)
$$

is a chain in $\operatorname{Spec}(A)$, which implies that $\operatorname{dim} B \leq \operatorname{dim} A$.
For any chain $\mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \cdots \subsetneq \mathfrak{p}_{n}$ in $\operatorname{Spec}(A)$, by the Going-Up Theorem there is a chain

$$
\mathfrak{q}_{0} \subsetneq \mathfrak{q}_{1} \subsetneq \cdots \subsetneq \mathfrak{q}_{n}
$$

in $\operatorname{Spec}(B)$ (such that $f^{*}\left(\mathfrak{q}_{i}\right)=\mathfrak{p}_{i}$ for any $\left.i\right)$. Hence $\operatorname{dim} A \leq \operatorname{dim} B$; and claim follows.

INTEGRAL OVER AN IDEAL

So far we have proved that if $f: A \hookrightarrow B$ is integral, then f^{*} is onto and closed, and its fibers have dimension 0 . Next we want to show that under certain additional conditions, f^{*} is also open, and get a better understanding of its fibers. To this end, we start with a technical lemma, and we will see its importance later.

Suppose B / A is a ring extension and $\mathfrak{a} \unlhd A$. We say $b \in B$ is integral over A if there are $a_{i} \in \mathfrak{a}$ such that

$$
b^{n}+a_{n-1} b^{n-1}+\cdots+a_{0}=0
$$

Lemma 3. Suppose B / A is a ring extension and C is the integral closure of A in B. Suppose $\mathfrak{a} \unlhd A$. Then

$$
b \in B \text { is integral over } \mathfrak{a} \Leftrightarrow b \in \sqrt{\mathfrak{a}^{e}}
$$

where \mathfrak{a}^{e} is the extension of \mathfrak{a} in C; in particular if b_{1} and b_{2} are integral over \mathfrak{a}, then so are $b_{1} \pm b_{2}$ and $b_{1} b_{2}$.

Proof. (\Rightarrow) Suppose b is integral over \mathfrak{a}; that means there are $a_{i} \in \mathfrak{a}$ such that $b^{n}+a_{n-1} b^{n-1}+\cdots+a_{0}=0$. Hence $b \in C$ and

$$
b^{n}=-\left(a_{n-1} b^{n-1}+\cdots+a_{0}\right) \in \mathfrak{a}^{e}
$$

which implies that $b \in \sqrt{\mathfrak{a}^{e}}$.
(\Leftarrow) Suppose $b \in \sqrt{\mathfrak{a}^{e}}$; then there are $c_{i} \in C, a_{i} \in \mathfrak{a}$, and $n \in \mathbb{Z}^{+}$such that

$$
\begin{equation*}
b^{n}=c_{1} a_{1}+\cdots+c_{m} a_{m} . \tag{1}
\end{equation*}
$$

Let $\bar{C}:=A\left[c_{1}, \ldots, c_{m}\right]$. Since c_{i} 's are integral over A, \bar{C} is a finitely generated A-module. By (1) we have

$$
l_{b^{n}}(\bar{C}) \subseteq \mathfrak{a} \bar{C}
$$

where $\phi:=l_{b^{n}}: \bar{C} \rightarrow \bar{C}, l_{b^{n}}(x):=b^{n} x$ is an A-module homomorphism. Therefore by a result that we proved earlier (which was used to show Nakayama's lemma) we have

$$
\phi^{k}+a_{k-1}^{\prime} \phi^{k-1}+\cdots+a_{0}^{\prime}=0
$$

in $\operatorname{End}_{A}(\bar{C})$ for some $a_{i}^{\prime} \in \mathfrak{a}$. This implies that

$$
b^{n k}+a_{k-1}^{\prime} b^{n(k-1)}+\cdots+a_{0}^{\prime}=0
$$

for some $a_{i}^{\prime} \in \mathfrak{a}$; and claim follows.

Minimal polynomial Revisited

Lemma 4. Suppose B / A is an integral extension, B is an integral domain, A is integrally closed, and F is the field of fractions of A. Suppose $\mathfrak{a} \unlhd A$ and $b \in B$ is integral over \mathfrak{a}. Let

$$
m_{b, F}(x)=x^{m}+c_{m-1} x^{m-1}+\cdots+c_{0} \in F[x]
$$

be the minimal polynomial of b over F. Then $c_{i} \in \sqrt{\mathfrak{a}}$ for any i.

Proof. Since b is integral over \mathfrak{a}, there is $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in A[x]$ such that $a_{i} \in \mathfrak{a}$ and $f(b)=0$. Let E be a splitting field of $f(x)$ over F, and C be the integral closure of A in E. Then there are $\beta_{i} \in E$ such that $\beta_{1}=b$ and $f(x)=\prod_{i=1}^{n}\left(x-\beta_{i}\right)$; in particular all β_{i} 's are integral over \mathfrak{a}. Since $f(b)=0$, we have that $m_{b, F}(x) \mid f(x)$, which implies that all the zeros of $m_{b, F}(x)$ are integral over \mathfrak{a}. Hence by the previous lemma all the coefficients of $m_{b, F}(x)$ are integral over \mathfrak{a}; in particular $c_{i}{ }^{\prime}$ are integral over A and clearly they are in F. As A is integrally closed, we deduce that c_{i} 's are in A. Altogether we have $c_{i} \in A$ and c_{i} is integral over \mathfrak{a}. So again by the previous lemma $c_{i} \in \sqrt{\mathfrak{a}}$; and claim follows.

Going-Down Theorem

Proposition 5. Suppose B / A is an integral extension, B is an integral domain, and A is integrally closed. Suppose $\mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1}$ are in $\operatorname{Spec}(A)$ and $\mathfrak{q}_{1} \in \operatorname{Spec}(B)$ such that $\mathfrak{q}_{1} \cap A=\mathfrak{p}_{1}$. Then there is $\mathfrak{q}_{0} \in \operatorname{Spec}(B)$ such that $\mathfrak{q}_{0} \subseteq \mathfrak{q}_{1}$ and $\mathfrak{q}_{0} \cap A=\mathfrak{p}_{0}$.

Proof. We have to focus on primes ideals in \mathfrak{q}_{1}; that means we need to localize at \mathfrak{q}_{1}. Let $S_{\mathfrak{q}_{1}}:=B \backslash \mathfrak{q}_{1}$ and $S_{\mathfrak{p}_{1}}:=A \backslash \mathfrak{p}_{1}$; notice that $S_{\mathfrak{p}_{1}}=S_{\mathfrak{q}_{1}} \cap A$. So we have $A_{\mathfrak{p}_{1}} \subseteq S_{\mathfrak{p}_{1}}^{-1} B \subseteq B_{\mathfrak{q}_{1}}$ (and $A_{\mathfrak{p}_{1}} \subseteq S_{\mathfrak{p}_{1}}^{-1} B$ is an integral extension).

Claim. Let $f: A_{\mathfrak{p}_{1}} \rightarrow B_{\mathfrak{q}_{1}}$. To prove the proposition, it is enough to show that $S_{\mathfrak{p}_{1}}^{-1} \mathfrak{p}_{0}$ is in the image of f^{*}.

Proof of Claim. If $f^{*}\left(\widetilde{\mathfrak{q}}_{0}\right)=S_{\mathfrak{p}_{1}}^{-1} \mathfrak{p}_{0}$, then there is $\mathfrak{q}_{0} \in \operatorname{Spec}(B)$ such that $\widetilde{\mathfrak{q}}_{0}=S_{\mathfrak{q}_{1}}^{-1} \mathfrak{q}_{0}$,

$$
\begin{array}{rr}
S_{\mathfrak{q}_{1}} \cap \mathfrak{q}_{0}=\varnothing & \left(\Rightarrow \mathfrak{q}_{0} \subseteq \mathfrak{q}_{1} .\right) \\
S_{\mathfrak{q}_{1}}^{-1} \mathfrak{q}_{0} \cap S_{\mathfrak{p}}^{-1} A=S_{\mathfrak{p}}^{-1} \mathfrak{p}_{0} & \left(x \in \mathfrak{p}_{0} \Rightarrow \frac{x}{1} \in S_{\mathfrak{q}_{1}}^{-1} \mathfrak{q}_{0} \Rightarrow x \in \mathfrak{q}_{0},\right. \\
\left.x \in \mathfrak{q}_{0} \cap A \Rightarrow \frac{x}{1} \in S_{\mathfrak{q}_{1}}^{-1} \mathfrak{q}_{0} \cap S_{\mathfrak{p}}^{-1} A \Rightarrow \frac{x}{1} \in S_{\mathfrak{p}_{1}}^{-1} \mathfrak{p}_{0} \Rightarrow x \in \mathfrak{p}_{0} .\right)
\end{array}
$$

And so $\mathfrak{p}_{0}=\mathfrak{q}_{0} \cap A$ and $\mathfrak{q}_{0} \subseteq \mathfrak{q}_{1}$.
We have proved earlier that a prime ideal is in the image of f^{*} if and only if it is a contracted ideal. This means it is enough to prove $\left(S_{\mathfrak{p}_{1}}^{-1} \mathfrak{p}_{0}\right)^{e c}=S_{\mathfrak{p}_{1}}^{-1} \mathfrak{p}_{0}$. Suppose to the contrary $\frac{a}{s} \in\left(S_{\mathfrak{p}_{1}}^{-1} \mathfrak{p}_{0}\right)^{e c} \backslash S_{\mathfrak{p}_{1}}^{-1} \mathfrak{p}_{0}$; so we are assuming there are $a \in A \backslash \mathfrak{p}_{0}$ and $s \in S_{\mathfrak{p}_{1}}$ such that $\frac{a}{s} \in \mathfrak{p}_{0} B_{\mathfrak{q}_{1}} \backslash \mathfrak{p}_{0} A_{\mathfrak{p}_{1}}$. This means there are $b_{i} \in B, s_{i} \in S_{\mathfrak{q}_{1}}$, and $p_{i} \in \mathfrak{p}_{0}$ such that

$$
\frac{b}{s}=\sum_{i} p_{i} \frac{b_{i}}{s_{i}} .
$$

This implies that for some $s_{i}^{\prime}, s^{\prime} \in S_{\mathfrak{q}_{1}}$ we have

$$
a s^{\prime}=\sum_{i} s_{i}^{\prime} p_{i} b_{i} \in \mathfrak{p}_{0}^{e} .
$$

Hence $a s^{\prime}$ is integral over \mathfrak{p}_{0}. Therefore by the previous lemma,

$$
m_{a s^{\prime}, F}(x)=x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0}
$$

for some $a_{i} \in \mathfrak{p}_{0}$ where F is the field of fractions of A. Notice that

$$
m_{s^{\prime}, F}(x)=\frac{1}{a^{n}} m_{a s^{\prime}, F}(a x),
$$

as $a \in A \subseteq F$. We also notice that since s^{\prime} is integral over A, by the previous lemma, $m_{s^{\prime}, F}(x) \in A[x]$; say $m_{s^{\prime}, F}(x)=x^{m}+a_{m-1}^{\prime} x^{m-1}+\cdots+a_{0}^{\prime}$. Then

$$
a^{i} a_{m-i}^{\prime}=a_{m-i} \in \mathfrak{p}_{0}
$$

As $a \notin \mathfrak{p}_{0}$ and \mathfrak{p}_{0} is prime, we deduce that $a_{m-i}^{\prime} \in \mathfrak{p}_{0}$. This means s^{\prime} is integral over \mathfrak{p}_{0}; and so

$$
s^{\prime} \in \sqrt{\mathfrak{p}_{0}^{e}} \subseteq \sqrt{\mathfrak{p}_{1}^{e}} \subseteq \sqrt{\mathfrak{q}_{1}}=\mathfrak{q}_{1}
$$

which contradicts $s^{\prime} \in S_{\mathfrak{q}_{1}}$.

Theorem 6 (Going-Down). Suppose B / A is an integral extension, B is an integral domain, and A is integrally closed. Suppose

$$
\begin{array}{rllllll}
& & \mathfrak{q}_{m} & \subsetneq & \cdots & \subsetneq & \mathfrak{q}_{n} \in \operatorname{Spec}(B) \\
\mathfrak{p}_{0} \subsetneq & \subsetneq & \subsetneq \mathfrak{p}_{m} \subsetneq & \cdots & \subsetneq & \mathfrak{p}_{n} \in \operatorname{Spec}(A),
\end{array}
$$

and $\mathfrak{q}_{i} \cap A=\mathfrak{p}_{i}$. Then we can go down in the chain; that means there are $\mathfrak{q}_{0} \subsetneq \cdots \mathfrak{q}_{m-1}$ in $\operatorname{Spec}(B)$ such that $\mathfrak{q}_{i} \cap A=\mathfrak{p}_{i}$.

Proof. One can easily defined \mathfrak{q}_{i} 's inductively: for $m=n+1$, one can use the surjectivity of f^{*}. And the induction step can be deduce by the above proposition.

We will see how Going-Down can help us to show f^{*} is open.

