MATH200C, LECTURE 13

GOLSEFIDY

Integral morphisms are open under some conditions.

Suppose $f: A \hookrightarrow B$ is an integral embedding; so far we have proved that f^{*} is onto and closed, any fiber has dimension 0 , and $\operatorname{dim} A=\operatorname{dim} B$. Next we proved the Going-Down Theorem under some conditions. Today we show that under the same conditions f^{*} is also open.

Theorem 1. Suppose $f: A \hookrightarrow B$ is integral, B is an integral domain, and A is integrally closed. Then $f^{*}: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ is open.

Proof. We know that $\left\{\mathscr{O}_{b}\right\}_{b \in B}$ forms a basis for the open subsets of $\operatorname{Spec}(B)$ where $\mathscr{O}_{b}:=\{\mathfrak{q} \in \operatorname{Spec}(B) \mid b \notin \mathfrak{q}\}$. So it is enough to show $f^{*}\left(\mathscr{O}_{b}\right)$ is open for any $b \in B$. Take $b \in B$, and let $g(x)$ be the minimal polynomial of b over the field of fractions of A; say $g(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$. In the previous lecture, we have proved that $a_{i} \in A$.

Claim. $f^{*}\left(\mathscr{O}_{b}\right)=\bigcup_{i=0}^{n-1} \mathscr{O}_{a_{i}}$; and so $f^{*}\left(\mathscr{O}_{b}\right)$ is open.
Proof of Claim. (\subseteq) Suppose $\mathfrak{p} \in f^{*}\left(\mathscr{O}_{b}\right)$. Then there is $\mathfrak{q} \in \operatorname{Spec}(B)$ such that $\mathfrak{q}^{c}=\mathfrak{p}$; and so $\mathfrak{p}^{e} \subseteq \mathfrak{q}$, which implies that $\sqrt{\mathfrak{p}^{e}} \subseteq \mathfrak{q}$. Therefore knowing that $b \notin \mathfrak{q}$ implies that $b \notin \sqrt{\mathfrak{p}^{e}}$. By an earlier result, we get that b is not integral over \mathfrak{p}; and so at least one of the a_{i} 's is not in \mathfrak{p}, which means $\mathfrak{p} \in \bigcup_{i=0}^{n-1} \mathscr{O}_{a_{i}}$.
(\supseteq) Suppose $\mathfrak{p} \in \bigcup_{i=0}^{n-1}$; by a lemma that we proved in the previous lecture, if b is integral over \mathfrak{p}, then all the non-leading coefficients of the minimal polynomial of b over the field of fractions of A should be in \mathfrak{p}. So we deduce that b is not integral over \mathfrak{p}. Thus by a proposition that was proved in the previous lecture, $b \notin \sqrt{\mathfrak{p}^{e}}$. Hence there is $\widetilde{\mathfrak{q}} \in \operatorname{Spec}(B)$ such that $\mathfrak{p}^{e} \subseteq \widetilde{\mathfrak{q}}$ and $b \notin \widetilde{\mathfrak{q}}$. So we have $\mathfrak{p} \subseteq \widetilde{\mathfrak{q}}^{c}$ is a chain in $\operatorname{Spec}(A)$; therefore by the Going-Down Theorem, there is $\mathfrak{q} \in \operatorname{Spec}(B)$ such that $\mathfrak{q} \subseteq \widetilde{\mathfrak{q}}$ and $\mathfrak{q}^{c}=\mathfrak{p}$. Hence $f^{*}(\mathfrak{q})=\mathfrak{p}$ and $b \notin \mathfrak{q}$ as $\mathfrak{q} \subseteq \widetilde{\mathfrak{q}}$ and $b \notin \tilde{\mathfrak{q}}$; this means $\mathfrak{p} \in f^{*}\left(\mathscr{O}_{b}\right)$.

Getting Noetherian condition for some integral closures.

As it has been pointed out earlier, one of the important examples that you should have in mind is the integral closure \mathscr{O}_{k} of \mathbb{Z} in a number field k. So far we have proved that $f^{*}: \operatorname{Spec}\left(\mathscr{O}_{k}\right) \rightarrow \operatorname{Spec}(\mathbb{Z})$ is an open, closed, and onto map. And $\operatorname{dim} \mathscr{O}_{k}=\operatorname{dim} \mathbb{Z}=1$. Next we want to show they are Noetherian. We do it in much more generality.

Theorem 2. Suppose $f: A \hookrightarrow B$ is integral, B is an integral domain, and A is integrally closed. Let F be the field of fractions of A, and E be the field of fractions of B. Suppose E / F is a finite separable extension. Then there are $e_{1}, \ldots, e_{n} \in E$ such that

$$
\begin{equation*}
B \subseteq A e_{1}+\cdots+A e_{n} . \tag{1}
\end{equation*}
$$

In particular, if A is Noetherian, then B is Noetherian.
Before we prove the claimed inclusion (1) in above theorem, we show how this implies the claimed Noetherian condition.

Proof of the Noetherian condition. If A is Noetherian, then any finitely generated A-module is a Noetherian A-module. Hence $\sum_{i=1}^{n} A e_{i}$ is a Noetherian A-module. This implies that any of its A-submodules is Noetherian; and so B is a Noetherian A-module. Therefore B is a Noetherian B-module, which means B is Noetherian.

To show the above theorem, first we review some basic properties of finite separable field extensions and non-degenerate bilinear forms.

Recall from linear algebra. Suppose V is a finite dimensional vector space over a field F. Let $\mathfrak{B}:=\left\{v_{1}, \ldots, v_{n}\right\}$ be an F-basis of V. For $v \in V$, we let $|v\rangle_{\mathfrak{B}}:=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$ if $v=\sum_{i=1}^{n} c_{i} v_{i} ;$ and we let $\left\langle\left. v\right|_{\mathfrak{B}} \text { be the transpose of } \mid v\right\rangle_{\mathfrak{B}}$. For any F-linear map $T: V \rightarrow V$, we have a matrix $[T]_{\mathfrak{B}} \in M_{n}(F)$ such that for any $v \in V,|T(v)\rangle_{\mathfrak{B}}=[T]_{\mathfrak{B}}|v\rangle_{\mathfrak{B}}$.

Lemma 3. Suppose E / F is finite separable field extension. Let $\mathfrak{B}:=\left\{e_{1}, \ldots, e_{n}\right\}$ be an F-basis of E, and $l_{e}: E \rightarrow E, l_{e}\left(e^{\prime}\right):=e e^{\prime}$. Let $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ be the set of
F-embeddings of E into an algebraic closure \bar{F} of F. Then for any $e \in E,\left[l_{e}\right]_{\mathfrak{B}}$ is similar to the diagonal matrix $\operatorname{diag}\left(\sigma_{1}(e), \ldots, \sigma_{n}(e)\right)$ over \bar{F}.

Proof. Since E / F is a finite separable extension, $E=F[\alpha]$ for some $\alpha \in E$. Let $m_{\alpha, F}(x)$ be the minimal polynomial of α over F. So $[E: F]=\operatorname{deg} m_{\alpha, F}$. Since E / F is a separable extension, $m_{\alpha, F}(x)$ has $n:=[E: F]$ distinct zeros; say $m_{\alpha, F}(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)$ for α_{i}. Then for any $\sigma \in \operatorname{Embed}_{F}(E, \bar{F}), \sigma(\alpha) \in$ $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$; and for any i, there is a unique F-embedding σ_{i} of E into \bar{F} that sends α to α_{i}. Hence after rearranging we can and will assume that $\sigma_{i}(\alpha)=\alpha_{i}$. We have

$$
\begin{aligned}
E \otimes_{F} \bar{F} & =F[\alpha] \otimes_{F} \bar{F} \\
& \simeq F[x] /\left\langle\prod_{i=1}^{n}\left(x-\alpha_{i}\right)\right\rangle \otimes_{F} \bar{F} \simeq \bar{F}[x] /\left\langle\prod_{i=1}^{n}\left(x-\alpha_{i}\right)\right\rangle \\
& \simeq \bigoplus_{i=1}^{n} \bar{F}[x] /\left\langle x-\alpha_{i}\right\rangle \simeq \bigoplus_{i=1}^{n} \bar{F} .
\end{aligned}
$$

And following these isomorphisms we have that

$$
\begin{aligned}
\alpha \otimes 1 & \mapsto x+\mathfrak{a} \otimes 1 \mapsto x+\mathfrak{a}^{e} \\
& \mapsto\left(x+\left\langle x-\alpha_{1}\right\rangle, \ldots, x+\left\langle x-\alpha_{n}\right\rangle\right) \mapsto\left(\alpha_{1}, \ldots, \alpha_{n}\right) \\
& =\left(\sigma_{1}(\alpha), \ldots, \sigma_{n}(\alpha)\right) .
\end{aligned}
$$

Since the above isomorphism is an \bar{F}-algebra isomorphism and $E=F[\alpha]$, we get an \bar{F}-algebra isomorphism

$$
\theta: E \otimes_{F} \bar{F} \rightarrow \bigoplus_{i=1}^{n} \bar{F}, \theta(e \otimes 1)=\left(\sigma_{1}(e), \ldots, \sigma_{n}(e)\right)
$$

for any $e \in E$. Therefore we get the following commuting diagram

where $d_{e}: \bar{F}^{n} \rightarrow \bar{F}^{n}, d_{e}\left(x_{1}, \ldots, x_{n}\right):=\left(\sigma_{1}(e) x_{1}, \ldots, \sigma_{n}(e) x_{n}\right)$. Notice that since $\left\{e_{1}, \ldots, e_{n}\right\}$ is an F-basis of $E,\left\{e_{1} \otimes 1, \ldots, e_{n} \otimes 1\right\}$ is an \bar{F}-basis of $E \otimes_{F} \bar{F}$ and $\widehat{\mathfrak{B}}:=\left\{\theta\left(e_{1}\right), \ldots, \theta\left(e_{n}\right)\right\}$ is an \bar{F}-basis of \bar{F}^{n}. As θ is an \bar{F}-algebra isomorphism,
by the above diagram $\left[l_{e}\right]_{\mathfrak{B}}=\left[d_{e}\right]_{\widehat{\mathfrak{B}}}$. On the other hand, in the standard basis \mathfrak{B}^{\prime} of \bar{F}^{n} we have $\left[d_{e}\right]_{\mathfrak{B}^{\prime}}=\operatorname{diag}\left(\sigma_{1}(e), \ldots, \sigma_{n}(e)\right)$; and claim follows.

Corollary 4. Suppose E / F is a finite separable extension. Let

$$
\operatorname{Tr}_{E / F}(e):=\sum_{\sigma \in \operatorname{Embed}_{F}(E, \bar{F})} \sigma(e),
$$

and

$$
\mathrm{N}_{E / F}(e):=\prod_{\sigma \in \operatorname{Embed}_{F}(E, \bar{F})} \sigma(e) .
$$

Let $l_{e}: E \rightarrow E, l_{e}\left(e^{\prime}\right):=e e^{\prime}$. Then $\operatorname{Tr}_{E / F}(e)=\operatorname{Tr}\left(l_{e}\right)$ and $\mathrm{N}_{E / F}(e)=\operatorname{det} l_{e}$; in particular, $\operatorname{Tr}_{E / F}(E) \subseteq F$ and $\mathrm{N}_{E / F}(E) \subseteq F$.

Note. Suppose $\mathfrak{B}:=\left\{e_{1}, \ldots, e_{n}\right\}$ is an F-basis of a vector space V; and $f: V \times V \rightarrow F$ is a bilinear map. Then $[f]_{\mathfrak{B}}:=\left[f\left(e_{i}, e_{j}\right)\right]$, and for any $v, w \in V$, we have $f(v, w)=\left\langle\left. v\right|_{\mathfrak{B}}[f]_{\mathfrak{B}} \mid w\right\rangle_{\mathfrak{B}}$.

Lemma 5. In the above setting, f is non-degenerate if and only if $\operatorname{det}[f]_{\mathfrak{B}} \neq 0$.
Proof. (\Rightarrow) suppose $\operatorname{det}[f]_{\mathfrak{B}}=0$; then there is $w \neq 0$ such that $[f]_{\mathfrak{B}}|w\rangle_{\mathfrak{B}}=0$; and so for any $v \in V, f(v, w)=0$ and $w \neq 0$, which contradicts the assumption that f is non-degenerate.
(\Leftarrow) suppose f is degenerate; so there is $w \neq 0$ such that $f(V, w)=0$; this implies that $\left\langle\left. v\right|_{\mathfrak{B}}[f]_{\mathfrak{B}} \mid w\right\rangle_{\mathfrak{B}}=0$ for any $v \in V$. Letting $v=e_{i}$, we deduce that the i-th component of $[f]_{\mathfrak{B}}|w\rangle_{\mathfrak{B}}$ is zero. Therefore $[f]_{\mathfrak{B}}|w\rangle_{\mathfrak{B}}=0$. As $\operatorname{det}[f]_{\mathfrak{B}} \neq 0$, we deduce that $w=0$, which is a contradiction.

Lemma 6. Suppose V is a finite dimensional F-vector space, and $f: V \times V \rightarrow F$ is a non-degenerate F-bilinear form; then $T_{f}: V \rightarrow V^{*},\left(T_{f}(v)\right)(w):=f(v, w)$ is an F-module isomorphism, where $V^{*}:=\operatorname{Hom}_{F}(V, F)$.

Proof. Since f is linear in the second factor, $T_{f}(v) \in V^{*}$; and since f is linear in the first factor, $v \mapsto T_{f}(v)$ is a linear map. If $v \in \operatorname{ker} T_{f}$, then for any $w \in V,\left(T_{f}(v)\right)(w)=0$, which implies that $f(v, V)=0$; and so $v=0$ as f is non-degenerate. Hence T_{f} is an injective F-linear map. On the other hand, $V^{*}=\operatorname{Hom}_{F}\left(\bigoplus_{i=1}^{n} F, F\right) \simeq \bigoplus_{i=1}^{n} \operatorname{Hom}_{F}(F, F) \simeq F^{n} \simeq V$. Hence T_{f} is also surjective as V and V^{*} have equal dimensions.

Lemma 7. Suppose $\left\{v_{1}, \ldots, v_{n}\right\}$ is an F-basis of V, and $f: V \times V \rightarrow F$ is a non-degenerate bilinear map. Then there is a dual basis $\left\{w_{1}, \ldots, w_{n}\right\}$ with respect to f; that means it is a basis and

$$
f\left(v_{i}, w_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Let $\left\{v_{1}^{*}, \ldots, v_{n}^{*}\right\}$ be the dual basis of V^{*}; that means $v_{i}^{*}: V \rightarrow F$ is the F-linear extension of $v_{i}^{*}\left(v_{j}\right):=\left\{\begin{array}{ll}1 & \text { if } i=j \\ 0 & \text { otherwise. }\end{array}\right.$ By the previous lemma, T_{f} is surjective; and so there are w_{i} 's in V such that $T_{f}\left(w_{i}\right)=v_{i}^{*}$; and claim follows.

Lemma 8. Suppose E / F is a finite separable field extension. Then $f\left(e, e^{\prime}\right):=$ $\operatorname{Tr}_{E / F}\left(e e^{\prime}\right)$ is a non-degenerate symmetric bilinear form on E.

Proof. Suppose $\left\{e_{1}, \ldots, e_{n}\right\}$ is an F-basis of E. Then we have to show

$$
\operatorname{det}\left[\operatorname{Tr}_{E / F}\left(e_{i} e_{j}\right)\right] \neq 0
$$

We notice that $\operatorname{Tr}_{E / F}\left(e_{i} e_{j}\right)=\sum_{k=1}^{n} \sigma_{k}\left(e_{i} e_{j}\right)=\sum_{k=1}^{n} \sigma_{k}\left(e_{i}\right) \sigma\left(e_{j}\right)$ where $\operatorname{Embed}_{F}(E, \bar{F})$. Let $X:=\left[\sigma_{k}\left(e_{i}\right)\right]$ (the $i k$-th entry is $\left.\sigma_{k}\left(e_{i}\right)\right)$. Then by the previous equality we have

$$
\left[\operatorname{Tr}_{E / F}\left(e_{i} e_{j}\right)\right]=X X^{t} ; \text { and so } \operatorname{det}\left[\operatorname{Tr}_{E / F}\left(e_{i} e_{j}\right)\right]=\operatorname{det} X^{2}
$$

Hence it is enough to show rows of X are linearly independent. This we have already pointed out in the proof of Lemma 3: $\left\{\theta\left(e_{1}\right), \ldots, \theta\left(e_{n}\right)\right\}$ is an \bar{F}-basis of \bar{F}^{n}.

We will prove Theorem 3 in the next lecture.

