
MATH200C, LECTURE 13

GOLSEFIDY

Getting Noetherian condition for some integral closures.

In the previous lecture we were proving the following result.

Theorem 1. Suppose A is an integrally closed integral domain. Suppose F is a

field of fractions of A, and E/F is a finite separable field extension. Let B be the

integral closure of A in E. Then there are e1, . . . , en ∈ E such that

(1) B ⊆ Ae1 + · · ·+ Aen.

In particular, if A is Noetherian, then B is Noetherian.

We have already pointed out how to deduce that B is Noetherian if A is. We

have also proved a few lemmas. Let us recall a few of them.

Lemma 2. Suppose E/F is a finite separable field extension. Then

(1) |EmbedF (E,F )| = [E : F ] where F is an algebraic closure of F and

EmbedF (E,F ) is the set of F -embeddings of E into F .

(2) TrE/F (a) :=
󰁓

σ∈EmbedF (E,F ) σ(a) = Tr(la) where la : E → E, la(e) := ae

is viewed as an F -linear map; in particular, TrE/F (E) ⊆ F .

Lemma 3. Suppose E/F is a finite separable field extension. Then h(e, e′) :=

TrE/F (ee
′) is a non-degenerate symmetric bilinear form.

Lemma 4. Suppose V is a finite-dimensional F -vector space, and h : V ×V → F

is a non-degenerate F -bilinear map. Suppose {v1, . . . , vn} is an F -basis of V .

Then there is a dual basis {w1, . . . , wn} with respect to h; that means it is an

F -basis and for any i, j we have

h(vi, wj) =

󰀻
󰀿

󰀽
1 if i = j

0 if i ∕= j.

The last needed lemma is the following:
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Lemma 5. Suppose A is an integral domain, F is its field of fractions, E/F

is an algebraic extension, and B is the integral closure of A in E. Then E =

(A \ {0})−1B.

Proof. Let β ∈ E. Then β satisfies an equation with coefficients in F ; that means

βn + cn−1β
n−1 + · · ·+ c1β + c0 = 0

for some ci ∈ F . Taking a common denominator for ci’s, we find a ∈ A such that

ai := aci ∈ A. Then

aβn + an−1β
n−1 + · · ·+ a1β + a0 = 0.

After multiplying both sides by an−1, we get

(aβ)n + an−1(aβ)
n−1 + · · ·+ an−2a1(aβ) + an−1a0 = 0,

which means aβ is integral over A. Hence aβ ∈ B and β = aβ
a
∈ (A\{0})−1B. □

Proof of Theorem 1. Let {β1, . . . , βn} be an F -basis of E. By the previous lemma,

there is a ∈ A such that bi := aβi ∈ B. Since a ∈ A ⊆ F , {b1, . . . , bn} is an

F -basis of E. Let {e1, . . . , en} be a dual basis of E with respect to the bilinear

form h(x, y) := TrE/F (xy). Hence for any b ∈ B there are ci ∈ F such that

b = c1e1 + · · ·+ cnen;

this implies h(b, bi) = h(c1e1 + · · · + cnen, bi) =
󰁓

j cjh(ej, bi) = ci. On the other

hand, h(b, bj) =
󰁓n

k=1 σ(bbj) where {σ1, . . . , σn} are all the F -embeddings of E

into an algebraic closure F of F . As bbj ∈ B, they are integral over A; and so are

σk(bbj). Thus h(b, fj) is integral over A, and it is in F . As A is integrally closed,

we deduce that h(b, bj) ∈ A. Altogether, we get

b ∈ Ae1 + · · ·+ Aen;

and claim follows. □

Corollary 6. As an additive group Ok is isomorphic to Z[k:Q].

Proof. Since Z is integrally closed, we can apply Theorem 1 and deduce that

Ok ⊆ Ze1 + · · ·+ Zen

for some ei ∈ k. This implies that Ok is a subgroup of a torsion-free finitely

generated abelian group. Hence Ok is a finite rank abelian group; say Ok ≃ Zd.

Since (Z \ {0})−1Ok = k, we deduce that d = [K : Q]; and claim follows. □
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Valuation rings

We start with a technical definition and theorem; and then deduce many im-

portant results.

Definition 7. An integral domain A is called a valuation ring if for any element

α of its field of fractions F , either α ∈ A or α−1 ∈ A.

Example 8. Let A := {m
n
|m,n ∈ Z, 2 ∤ n}; then A is a valuation ring. More

generally if D is a UFD and p ∈ D is irreducible, then D〈p〉 := {a
b
| a, b ∈ D, p ∤ b}

is a valuation ring.

In your homework assignment you will see the definition of a valuation; and

you will see that a ring is a valuation ring if and only if there is a valuation v of

F and A = {a ∈ F |v(a) ≥ 0}.

Proposition 9. Suppose A is a valuation ring and F is its field of fractions.

Then

(1) A is a local ring.

(2) If A ⊆ A′ ⊆ F , then A′ is a valuation ring.

(3) A is integrally closed.

Proof. (1) Let m := A \A×. For a ∈ m and b ∈ A, clearly ab ∈ m (if the product

of two elements has an inverse, then both of them have).

If a, b ∈ m \ {0}, then either a
b
∈ A or b

a
∈ A. This implies that either

(1+ a
b
) ∈ A or (1+ b

a
) ∈ A; and so either a(1 + b

a
) ∈ m or b(1 + a

b
) ∈ m. In either

case, we deduce that a + b ∈ m. Hence m is an ideal of A. Therefore it is the

unique maximal ideal as its complement consists of units.

(2) is clear.

(3) Suppose α ∈ F is integral over A. And suppose to the contrary that α is

not in A. Hence α−1 ∈ A and

αn + an−1α
n−1 + · · ·+ a1α + a0 = 0

for some ai ∈ A. Therefore

α = −(an−1 + an−2α
−1 + · · ·+ a0α

−(n−1)) ∈ A

which is a contradiction. □
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Note. As you can see in the above argument, if A is a subring of a field F

and α ∈ F , then α is integral over A if and only if α ∈ A[α−1].

The following is our main technical theorem on this subjection.

Theorem 10. Suppose Ω is an algebraically closed field, A0 is an integral domain,

and θ0 : A0 → Ω is a ring homomorphism. Suppose A0 is a subring of a field F .

Let

Σ := {(B, θ)| A ⊆ B ⊆ F intermediate ring , θ ring hom, θ|A0 = θ0}.

We say (B, θ) ≼ (B′, θ′) if B ⊆ B′ and θ′|B = θ. Then Σ has a maximal element

(B, θ), B is a valuation ring, its unique maximal ideal is ker θ, and F is the field

of fractions of B.

Let’s make a remark on why it is important to have a good understanding

of Hom(A,Ω). Suppose A is a finitely generated F -algebra; that implies that

A ≃ F [x1, . . . , xn]/a. Then there is a bijection between HomF (A,Ω) and

{φ ∈ HomF (F [x1, . . . , xn],Ω)| a ⊆ kerφ}.

On the other hand, there is a bijection between F -algebra homomorphism φ :

F [x1, . . . , xn] → Ω and Ωn; to any point p ∈ Ωn, we can associate the evaluation

at p map φp; and any homomorphism is of this form. So we get a bijection

between HomF (A,Ω) and

{p ∈ Ωn| ∀f ∈ a, f(p) = 0}.

So have a good understand of Hom(A,Ω) helps us understand common zeros of

a family of polynomials.

Proof of Theorem 10. Claim 1. Existence of a maximal element.

Proof of Claim 1. It is clear that (Σ,≼) is a non-empty POSet ((A0, θ0) ∈ Σ).

To show that it has a maximal, by Zorn’s lemma, it is enough to show any chain

C := {(Bi, θi)}i∈I in Σ has an upper bound.

Let B :=
󰁖

i∈I Bi and θ : B → Ω, θ(b) := θi(b) if b ∈ Bi. For b, b′ ∈ B, there

are i, j ∈ I such that b ∈ Bi and b′ ∈ Bj. Since C is a chain, without loss of

generality we can and will assume that Bi ⊆ Bj. Hence b, b′ ∈ Bj, which implies

that b+ b′, bb′ ∈ Bj ⊆ B. Thus B is a subring of F .
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If b ∈ Bi ∩ Bj, then again as C is a chain without loss of generality we can

and will assume that (Bi, θi) ≼ (Bj, θj); and so θj|Bi = θi, which implies that

θi(b) = θj(b). Hence θ is well-defined.

If b, b′ ∈ B, then as we discussed above, there is i ∈ I such that b, b′ ∈ Bi.

Hence θ(b + b′) = θi(b + b′) = θi(b) + θi(b
′) = θ(b) + θ(b′), and θ(bb′) = θi(bb

′) =

θi(b)θi(b
′) = θ(b)θ(b′). Therefore θ is a ring homomorphism.

So (B, θ) is an upper bound of C ; thus by Zorn’s lemma, Σ has a maximal

element.

Claim 2. Suppose (B, θ) is a maximal element of Σ. Then B is a local ring

and m := ker θ is it unique maximal ideal.

Note. At each step, we try to extend θ; and then use the maximality condition

to get the desired property.

Proof of Claim 2. Since B/ ker θ can be embedded into Ω, it is an integral

domain. Hence ker θ is a prime ideal of B. As B is a subring of F , we get that

Bker θ ⊆ F . Since θ(B \ ker θ) ⊆ Ω×, by the universal property of localization,

there is 󰁥θ : Bker θ → Ω such that 󰁥θ( b
1
) = θ(b). Hence (Bker θ, 󰁥θ) ∈ Σ and (B, θ) ≼

(Bker θ, 󰁥θ). Since (B, θ) is maximal in Σ, we deduce that B = Bker θ. Therefore B

is a local ring and ker θ is its unique maximal ideal.

Claim 3. For any α ∈ F , either α ∈ B or α−1 ∈ B.

To prove this claim, again we would like to extend θ to either B[α] or B[α−1],

and then use maximality of B to deduce the desired result. That means we have

to find a ring homomorphism 󰁥θ : B[α] → Ω such that 󰁥θ|B = θ; in particular,

ker 󰁥θ ⊇ ker θ =: m. Hence m[α] needs to be a proper ideal of B[α]. So we start

with the following subclaim.

Subclaim. For any α ∈ F×, either m[α] ∕= B[α] or m[α−1] ∕= B[α−1].

Proof of Subclaim. Suppose to the contrary that 1 ∈ m[α] ∩ m[α−1]. So there

are ci, c
′
i ∈ m such that 1 = c0+c1α+· · ·+cnα

n, and 1 = c′0+c′1α
−1+· · ·+c′mα

−m;

and suppose m and n are smallest possible positive integers with these properties.

Without loss of generality we can and will assume that n ≥ m. Then

1 = c′0 + c′1α
−1 + · · ·+ c′mα

−m ⇒(1− c′0) = c′1α
−1 + · · ·+ c′mα

−m

(since B is local, 1 +m ⊆ B×) ⇒1 = (1− c′0)
−1(c′1α

−1 + · · ·+ c′mα
−m)

(for some c′′i ∈ m) ⇒1 = c′′1α
−1 + · · ·+ c′′mα

−m

⇒α = c′′1 + · · ·+ c′′mα
−(m−1).
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Hence

1 =c0 + c1α + · · ·+ cnα
n

=c0 + c1α + · · ·+ cnα
n−1(α)

=c0 + c1α + · · ·+ cnα
n−1(c′′1 + · · ·+ c′′mα

−(m−1)) = c′′′0 + c′′′1 α + · · ·+ c′′′n−1α
n−1,

for some c′′′i ∈ m which contradicts minimality of n.

Proof of Claim 3. By Subclaim, without loss of generality we can and will

assume that m[α] is a proper ideal of B[α]. Hence there is a maximal ideal m′ of

B[α] that contains m as a subset. Therefore m′ ∩B ⊇ m; and as m is a maximal

ideal, we deduce that B∩m′ = m. Thus B/m can be embedded into B[α]/m′; and

B[α]/m′ = k(m)[α] where k(m) is the copy of B/m in B[α]/m′ and α := α +m′.

Since k(m)[α] is a field extension of k(m), we deduce that it is a finite extension.

Hence the embedding of k(m) in Ω can be extended to an embedding of k(m)[α]

into Ω. Overall we get the following commuting diagram:

B B[α]

B/m B[α]/m′

Ω

θ

And s we get an extension of θ to B[α]. Therefore by the maximality of (B, θ),

we deduce that α ∈ B; and claim follows. □


