MATH200C, LECTURE 13

GOLSEFIDY

Getting Noetherian condition for some integral closures.

In the previous lecture we were proving the following result.

Theorem 1. Suppose A is an integrally closed integral domain. Suppose F is a field of fractions of A, and E/F is a finite separable field extension. Let B be the integral closure of A in E. Then there are $e_1, \ldots, e_n \in E$ such that

$$B \subseteq Ae_1 + \cdots + Ae_n.$$

In particular, if A is Noetherian, then B is Noetherian.

We have already pointed out how to deduce that B is Noetherian if A is. We have also proved a few lemmas. Let us recall a few of them.

Lemma 2. Suppose E/F is a finite separable field extension. Then

1. $|\text{Embed}_F(E, \bar{F})| = [E : F]$ where \bar{F} is an algebraic closure of F and $\text{Embed}_F(E, \bar{F})$ is the set of F-embeddings of E into \bar{F}.
2. $\text{Tr}_{E/F}(a) := \sum_{\sigma \in \text{Embed}_F(E, \bar{F})} \sigma(a) = \text{Tr}(l_a)$ where $l_a : E \to E, l_a(e) := ae$ is viewed as an F-linear map; in particular, $\text{Tr}_{E/F}(E) \subseteq F$.

Lemma 3. Suppose E/F is a finite separable field extension. Then $h(e, e') := \text{Tr}_{E/F}(ee')$ is a non-degenerate symmetric bilinear form.

Lemma 4. Suppose V is a finite-dimensional F-vector space, and $h : V \times V \to F$ is a non-degenerate F-bilinear map. Suppose $\{v_1, \ldots, v_n\}$ is an F-basis of V. Then there is a dual basis $\{w_1, \ldots, w_n\}$ with respect to h; that means it is an F-basis and for any i, j we have

$$h(v_i, w_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

The last needed lemma is the following:
Lemma 5. Suppose A is an integral domain, F is its field of fractions, E/F is an algebraic extension, and B is the integral closure of A in E. Then $E = (A \setminus \{0\})^{-1}B$.

Proof. Let $\beta \in E$. Then β satisfies an equation with coefficients in F; that means

$$\beta^n + c_{n-1}\beta^{n-1} + \cdots + c_1\beta + c_0 = 0$$

for some $c_i \in F$. Taking a common denominator for c_i's, we find $a \in A$ such that $a_i := ac_i \in A$. Then

$$a\beta^n + a_{n-1}\beta^{n-1} + \cdots + a_1\beta + a_0 = 0.$$

After multiplying both sides by a^{n-1}, we get

$$(a\beta)^n + a_{n-1}(a\beta)^{n-1} + \cdots + a^2a_1(a\beta) + a^{n-1}a_0 = 0,$$

which means $a\beta$ is integral over A. Hence $a\beta \in B$ and $\beta = \frac{a\beta}{a} \in (A \setminus \{0\})^{-1}B$. □

Proof of Theorem 1. Let $\{\beta_1, \ldots, \beta_n\}$ be an F-basis of E. By the previous lemma, there is $a \in A$ such that $b_i := a\beta_i \in B$. Since $a \in A \subseteq F$, $\{b_1, \ldots, b_n\}$ is an F-basis of E. Let $\{e_1, \ldots, e_n\}$ be a dual basis of E with respect to the bilinear form $h(x, y) := \text{Tr}_{E/F}(xy)$. Hence for any $b \in B$ there are $c_i \in F$ such that

$$b = c_1e_1 + \cdots + c_ne_n;$$

this implies $h(b, b_i) = h(c_1e_1 + \cdots + c_ne_n, b_i) = \sum_j c_jh(e_j, b_i) = c_i$. On the other hand, $h(b, b_j) = \sum_{k=1}^n \sigma(bb_j)$ where $\{\sigma_1, \ldots, \sigma_n\}$ are all the F-embeddings of E into an algebraic closure \overline{F} of F. As $bb_j \in B$, they are integral over A; and so are $\sigma_k(bb_j)$. Thus $h(b, f_j)$ is integral over A, and it is in F. As A is integrally closed, we deduce that $h(b, b_j) \in A$. Altogether, we get

$$b \in Ae_1 + \cdots + Ae_n;$$

and claim follows. □

Corollary 6. As an additive group O_k is isomorphic to $\mathbb{Z}^{[k : \mathbb{Q}]}$.

Proof. Since \mathbb{Z} is integrally closed, we can apply Theorem 1 and deduce that

$$O_k \subseteq \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_n$$

for some $e_i \in k$. This implies that O_k is a subgroup of a torsion-free finitely generated abelian group. Hence O_k is a finite rank abelian group; say $O_k \simeq \mathbb{Z}^d$. Since $(\mathbb{Z} \setminus \{0\})^{-1}O_k = k$, we deduce that $d = [K : \mathbb{Q}]$; and claim follows. □
We start with a technical definition and theorem; and then deduce many important results.

Definition 7. An integral domain A is called a **valuation ring** if for any element α of its field of fractions F, either $\alpha \in A$ or $\alpha^{-1} \in A$.

Example 8. Let $A := \{\frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0\}$; then A is a valuation ring. More generally if D is a UFD and $p \in D$ is irreducible, then $D_{(p)} := \{\frac{a}{b} \mid a, b \in D, p \nmid b\}$ is a valuation ring.

In your homework assignment you will see the definition of a **valuation**; and you will see that a ring is a valuation ring if and only if there is a valuation v of F and $A = \{a \in F \mid v(a) \geq 0\}$.

Proposition 9. Suppose A is a valuation ring and F is its field of fractions. Then

1. A is a local ring.
2. If $A \subseteq A' \subseteq F$, then A' is a valuation ring.
3. A is integrally closed.

Proof.
(1) Let $m := A \setminus A^\times$. For $a \in m$ and $b \in A$, clearly $ab \in m$ (if the product of two elements has an inverse, then both of them have).

If $a, b \in m \setminus \{0\}$, then either $\frac{a}{b} \in A$ or $\frac{b}{a} \in A$. This implies that either $(1 + \frac{a}{b}) \in A$ or $(1 + \frac{b}{a}) \in A$; and so either $a(1 + \frac{b}{a}) \in m$ or $b(1 + \frac{a}{b}) \in m$. In either case, we deduce that $a + b \in m$. Hence m is an ideal of A. Therefore it is the unique maximal ideal as its complement consists of units.

(2) is clear.

(3) Suppose $\alpha \in F$ is integral over A. And suppose to the contrary that α is not in A. Hence $\alpha^{-1} \notin A$ and

$$\alpha^n + a_{n-1}\alpha^{n-1} + \cdots + a_1\alpha + a_0 = 0$$

for some $a_i \in A$. Therefore

$$\alpha = -(a_{n-1} + a_{n-2}\alpha^{-1} + \cdots + a_0\alpha^{-(n-1)}) \in A$$

which is a contradiction. □
Note. As you can see in the above argument, if A is a subring of a field F and $\alpha \in F$, then α is integral over A if and only if $\alpha \in A[\alpha^{-1}]$.

The following is our main technical theorem on this subject.

Theorem 10. Suppose Ω is an algebraically closed field, A_0 is an integral domain, and $\theta_0 : A_0 \to \Omega$ is a ring homomorphism. Suppose A_0 is a subring of a field F. Let

$$\Sigma := \{(B, \theta) | A \subseteq B \subseteq F \text{ intermediate ring }, \theta \text{ ring hom, } \theta|_{A_0} = \theta_0\}.$$

We say $(B, \theta) \preceq (B', \theta')$ if $B \subseteq B'$ and $\theta'|_B = \theta$. Then Σ has a maximal element (B, θ), B is a valuation ring, its unique maximal ideal is $\ker \theta$, and F is the field of fractions of B.

Let’s make a remark on why it is important to have a good understanding of $\text{Hom}(A, \Omega)$. Suppose A is a finitely generated F-algebra; that implies that $A \simeq F[x_1, \ldots, x_n]/\mathfrak{a}$. Then there is a bijection between $\text{Hom}_F(A, \Omega)$ and

$$\{\phi \in \text{Hom}_F(F[x_1, \ldots, x_n], \Omega) | \mathfrak{a} \subseteq \ker \phi\}.$$

On the other hand, there is a bijection between F-algebra homomorphism $\phi : F[x_1, \ldots, x_n] \to \Omega$ and Ω^n; to any point $p \in \Omega^n$, we can associate the evaluation at p map ϕ_p; and any homomorphism is of this form. So we get a bijection between $\text{Hom}_F(A, \Omega)$ and

$$\{p \in \Omega^n | \forall f \in \mathfrak{a}, f(p) = 0\}.$$

So have a good understand of $\text{Hom}(A, \Omega)$ helps us understand common zeros of a family of polynomials.

Proof of Theorem 10. Claim 1. Existence of a maximal element.

Proof of Claim 1. It is clear that (Σ, \preceq) is a non-empty POSet ($(A_0, \theta_0) \in \Sigma$).

To show that it has a maximal, by Zorn’s lemma, it is enough to show any chain $\mathcal{C} := \{(B_i, \theta_i)\}_{i \in I}$ in Σ has an upper bound.

Let $B := \bigcup_{i \in I} B_i$ and $\theta : B \to \Omega, \theta(b) := \theta_i(b)$ if $b \in B_i$. For $b, b' \in B$, there are $i, j \in I$ such that $b \in B_i$ and $b' \in B_j$. Since \mathcal{C} is a chain, without loss of generality we can and will assume that $B_i \subseteq B_j$. Hence $b, b' \in B_j$, which implies that $b + b', bb' \in B_j \subseteq B$. Thus B is a subring of F.

If \(b \in B_i \cap B_j \), then again as \(\mathcal{C} \) is a chain without loss of generality we can and will assume that \((B_i, \theta_i) \preceq (B_j, \theta_j)\); and so \(\theta_j|B_i = \theta_i \), which implies that \(\theta_i(b) = \theta_j(b) \). Hence \(\theta \) is well-defined.

If \(b, b' \in B \), then as we discussed above, there is \(i \in I \) such that \(b, b' \in B_i \). Hence \(\theta(b + b') = \theta_i(b + b') = \theta_i(b) + \theta_i(b') = \theta(b) + \theta(b') \), and \(\theta(bb') = \theta_i(bb') = \theta_i(b)\theta_i(b') = \theta(b)\theta(b') \). Therefore \(\theta \) is a ring homomorphism.

So \((B, \theta)\) is an upper bound of \(\mathcal{C} \); thus by Zorn’s lemma, \(\Sigma \) has a maximal element.

Claim 2. Suppose \((B, \theta)\) is a maximal element of \(\Sigma \). Then \(B \) is a local ring and \(m := \ker \theta \) is it unique maximal ideal.

Note. At each step, we try to extend \(\theta \); and then use the maximality condition to get the desired property.

Proof of Claim 2. Since \(B/\ker \theta \) can be embedded into \(\Omega \), it is an integral domain. Hence \(\ker \theta \) is a prime ideal of \(B \). As \(B \) is a subring of \(F \), we get that \(B_{\ker \theta} \subseteq F \). Since \(\theta(B \setminus \ker \theta) \subseteq \Omega^x \), by the universal property of localization, there is \(\hat{\theta} : B_{\ker \theta} \to \Omega \) such that \(\hat{\theta}(\frac{b}{1}) = \theta(b) \). Hence \((B_{\ker \theta}, \hat{\theta}) \) in \(\Sigma \) and \((B, \theta) \preceq (B_{\ker \theta}, \hat{\theta}) \). Since \((B, \theta)\) is maximal in \(\Sigma \), we deduce that \(B = B_{\ker \theta} \). Therefore \(B \) is a local ring and \(\ker \theta \) is its unique maximal ideal.

Claim 3. For any \(\alpha \in F \), either \(\alpha \in B \) or \(\alpha^{-1} \in B \).

To prove this claim, again we would like to extend \(\theta \) to either \(B[\alpha] \) or \(B[\alpha^{-1}] \), and then use maximality of \(B \) to deduce the desired result. That means we have to find a ring homomorphism \(\hat{\theta} : B[\alpha] \to \Omega \) such that \(\hat{\theta}|_B = \theta \); in particular, \(\ker \hat{\theta} \supseteq \ker \theta =: m \). Hence \(m[\alpha] \) needs to be a proper ideal of \(B[\alpha] \). So we start with the following subclaim.

Subclaim. For any \(\alpha \in F^x \), either \(m[\alpha] \neq B[\alpha] \) or \(m[\alpha^{-1}] \neq B[\alpha^{-1}] \).

Proof of Subclaim. Suppose to the contrary that \(1 \in m[\alpha] \cap m[\alpha^{-1}] \). So there are \(c_i, c_i' \in m \) such that \(1 = c_0 + c_1 \alpha + \cdots + c_n \alpha^n \), and \(1 = c_0' + c_1' \alpha^{-1} + \cdots + c_m' \alpha^{-m} \); and suppose \(m \) and \(n \) are smallest possible positive integers with these properties. Without loss of generality we can and will assume that \(n \geq m \). Then

\[
1 = c_0' + c_1' \alpha^{-1} + \cdots + c_m' \alpha^{-m} \Rightarrow (1 - c_0') = c_1' \alpha^{-1} + \cdots + c_m' \alpha^{-m}
\]

(since \(B \) is local, \(1 + m \subseteq B^x \)) \Rightarrow 1 = (1 - c_0')^{-1}(c_1' \alpha^{-1} + \cdots + c_m' \alpha^{-m})

(for some \(c_i'' \in m \)) \Rightarrow 1 = c_1'' \alpha^{-1} + \cdots + c_m'' \alpha^{-m} \Rightarrow \alpha = c_1'' + \cdots + c_m'' \alpha^{-(m-1)} \).
Hence
\[1 = c_0 + c_1 \alpha + \cdots + c_n \alpha^n = c_0 + c_1 \alpha + \cdots + c_n \alpha^{n-1}(\alpha) = c_0 + c_1 \alpha + \cdots + c_n \alpha^{n-1}(c' + \cdots + c_m \alpha^{-(m-1)}) = c'_0 + c'_1 \alpha + \cdots + c'_{n-1} \alpha^{n-1}, \]
for some \(c'_i \in \mathfrak{m} \) which contradicts minimality of \(n \).

Proof of Claim 3. By Subclaim, without loss of generality we can and will assume that \(\mathfrak{m}[\alpha] \) is a proper ideal of \(B[\alpha] \). Hence there is a maximal ideal \(\mathfrak{m}' \) of \(B[\alpha] \) that contains \(\mathfrak{m} \) as a subset. Therefore \(\mathfrak{m}' \cap B \supseteq \mathfrak{m} \); and as \(\mathfrak{m} \) is a maximal ideal, we deduce that \(B \cap \mathfrak{m}' = \mathfrak{m} \). Thus \(B/\mathfrak{m} \) can be embedded into \(B[\alpha]/\mathfrak{m}' \); and \(B[\alpha]/\mathfrak{m}' = k(\mathfrak{m})[\overline{\alpha}] \) where \(k(\mathfrak{m}) \) is the copy of \(B/\mathfrak{m} \) in \(B[\alpha]/\mathfrak{m}' \) and \(\overline{\alpha} := \alpha + \mathfrak{m}' \). Since \(k(\mathfrak{m})[\overline{\alpha}] \) is a field extension of \(k(\mathfrak{m}) \), we deduce that it is a finite extension. Hence the embedding of \(k(\mathfrak{m}) \) in \(\Omega \) can be extended to an embedding of \(k(\mathfrak{m})[\overline{\alpha}] \) into \(\Omega \). Overall we get the following commuting diagram:

\[
\begin{array}{c}
B & \xrightarrow{\theta} & B[\alpha] \\
\downarrow & & \downarrow \\
B/\mathfrak{m} & \xleftarrow{\omega} & B[\alpha]/\mathfrak{m}' \\
\downarrow & & \downarrow \\
\Omega & \xrightarrow{} & \Omega
\end{array}
\]

And so we get an extension of \(\theta \) to \(B[\alpha] \). Therefore by the maximality of \((B, \theta) \), we deduce that \(\alpha \in B \); and claim follows. \(\square \)