MATH200C, LECTURE 13

GOLSEFIDY

Getting Noetherian condition for some integral closures.

In the previous lecture we were proving the following result.
Theorem 1. Suppose A is an integrally closed integral domain. Suppose F is a field of fractions of A, and E / F is a finite separable field extension. Let B be the integral closure of A in E. Then there are $e_{1}, \ldots, e_{n} \in E$ such that

$$
\begin{equation*}
B \subseteq A e_{1}+\cdots+A e_{n} . \tag{1}
\end{equation*}
$$

In particular, if A is Noetherian, then B is Noetherian.
We have already pointed out how to deduce that B is Noetherian if A is. We have also proved a few lemmas. Let us recall a few of them.

Lemma 2. Suppose E / F is a finite separable field extension. Then
(1) $\left|\operatorname{Embed}_{F}(E, \bar{F})\right|=[E: F]$ where \bar{F} is an algebraic closure of F and $\operatorname{Embed}_{F}(E, \bar{F})$ is the set of F-embeddings of E into \bar{F}.
(2) $\operatorname{Tr}_{E / F}(a):=\sum_{\sigma \in \operatorname{Embed}_{F}(E, \bar{F})} \sigma(a)=\operatorname{Tr}\left(l_{a}\right)$ where $l_{a}: E \rightarrow E, l_{a}(e):=a e$ is viewed as an F-linear map; in particular, $\operatorname{Tr}_{E / F}(E) \subseteq F$.

Lemma 3. Suppose E / F is a finite separable field extension. Then $h\left(e, e^{\prime}\right):=$ $\operatorname{Tr}_{E / F}\left(e e^{\prime}\right)$ is a non-degenerate symmetric bilinear form.

Lemma 4. Suppose V is a finite-dimensional F-vector space, and $h: V \times V \rightarrow F$ is a non-degenerate F-bilinear map. Suppose $\left\{v_{1}, \ldots, v_{n}\right\}$ is an F-basis of V. Then there is a dual basis $\left\{w_{1}, \ldots, w_{n}\right\}$ with respect to h; that means it is an F-basis and for any i, j we have

$$
h\left(v_{i}, w_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j .\end{cases}
$$

The last needed lemma is the following:

Lemma 5. Suppose A is an integral domain, F is its field of fractions, E / F is an algebraic extension, and B is the integral closure of A in E. Then $E=$ $(A \backslash\{0\})^{-1} B$.

Proof. Let $\beta \in E$. Then β satisfies an equation with coefficients in F; that means

$$
\beta^{n}+c_{n-1} \beta^{n-1}+\cdots+c_{1} \beta+c_{0}=0
$$

for some $c_{i} \in F$. Taking a common denominator for c_{i} 's, we find $a \in A$ such that $a_{i}:=a c_{i} \in A$. Then

$$
a \beta^{n}+a_{n-1} \beta^{n-1}+\cdots+a_{1} \beta+a_{0}=0 .
$$

After multiplying both sides by a^{n-1}, we get

$$
(a \beta)^{n}+a_{n-1}(a \beta)^{n-1}+\cdots+a^{n-2} a_{1}(a \beta)+a^{n-1} a_{0}=0
$$

which means $a \beta$ is integral over A. Hence $a \beta \in B$ and $\beta=\frac{a \beta}{a} \in(A \backslash\{0\})^{-1} B$.
Proof of Theorem 1. Let $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ be an F-basis of E. By the previous lemma, there is $a \in A$ such that $b_{i}:=a \beta_{i} \in B$. Since $a \in A \subseteq F,\left\{b_{1}, \ldots, b_{n}\right\}$ is an F-basis of E. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a dual basis of E with respect to the bilinear form $h(x, y):=\operatorname{Tr}_{E / F}(x y)$. Hence for any $b \in B$ there are $c_{i} \in F$ such that

$$
b=c_{1} e_{1}+\cdots+c_{n} e_{n}
$$

this implies $h\left(b, b_{i}\right)=h\left(c_{1} e_{1}+\cdots+c_{n} e_{n}, b_{i}\right)=\sum_{j} c_{j} h\left(e_{j}, b_{i}\right)=c_{i}$. On the other hand, $h\left(b, b_{j}\right)=\sum_{k=1}^{n} \sigma\left(b b_{j}\right)$ where $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are all the F-embeddings of E into an algebraic closure \bar{F} of F. As $b b_{j} \in B$, they are integral over A; and so are $\sigma_{k}\left(b b_{j}\right)$. Thus $h\left(b, f_{j}\right)$ is integral over A, and it is in F. As A is integrally closed, we deduce that $h\left(b, b_{j}\right) \in A$. Altogether, we get

$$
b \in A e_{1}+\cdots+A e_{n}
$$

and claim follows.
Corollary 6. As an additive group \mathscr{O}_{k} is isomorphic to $\mathbb{Z}^{[k: \mathbb{Q}]}$.
Proof. Since \mathbb{Z} is integrally closed, we can apply Theorem 1 and deduce that

$$
\mathscr{O}_{k} \subseteq \mathbb{Z} e_{1}+\cdots+\mathbb{Z} e_{n}
$$

for some $e_{i} \in k$. This implies that \mathscr{O}_{k} is a subgroup of a torsion-free finitely generated abelian group. Hence \mathscr{O}_{k} is a finite rank abelian group; say $\mathscr{O}_{k} \simeq \mathbb{Z}^{d}$. Since $(\mathbb{Z} \backslash\{0\})^{-1} \mathscr{O}_{k}=k$, we deduce that $d=[K: \mathbb{Q}]$; and claim follows.

We start with a technical definition and theorem; and then deduce many important results.

Definition 7. An integral domain A is called a valuation ring if for any element α of its field of fractions F, either $\alpha \in A$ or $\alpha^{-1} \in A$.

Example 8. Let $A:=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in \mathbb{Z}, 2 \nmid n\right\}$; then A is a valuation ring. More generally if D is a UFD and $p \in D$ is irreducible, then $D_{\langle p\rangle}:=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in D, p \nmid b\right\}$ is a valuation ring.

In your homework assignment you will see the definition of a valuation; and you will see that a ring is a valuation ring if and only if there is a valuation v of F and $A=\{a \in F \mid v(a) \geq 0\}$.

Proposition 9. Suppose A is a valuation ring and F is its field of fractions. Then
(1) A is a local ring.
(2) If $A \subseteq A^{\prime} \subseteq F$, then A^{\prime} is a valuation ring.
(3) A is integrally closed.

Proof. (1) Let $\mathfrak{m}:=A \backslash A^{\times}$. For $a \in \mathfrak{m}$ and $b \in A$, clearly $a b \in \mathfrak{m}$ (if the product of two elements has an inverse, then both of them have).

If $a, b \in \mathfrak{m} \backslash\{0\}$, then either $\frac{a}{b} \in A$ or $\frac{b}{a} \in A$. This implies that either $\left(1+\frac{a}{b}\right) \in A$ or $\left(1+\frac{b}{a}\right) \in A$; and so either $a\left(1+\frac{b}{a}\right) \in \mathfrak{m}$ or $b\left(1+\frac{a}{b}\right) \in \mathfrak{m}$. In either case, we deduce that $a+b \in \mathfrak{m}$. Hence \mathfrak{m} is an ideal of A. Therefore it is the unique maximal ideal as its complement consists of units.
(2) is clear.
(3) Suppose $\alpha \in F$ is integral over A. And suppose to the contrary that α is not in A. Hence $\alpha^{-1} \in A$ and

$$
\alpha^{n}+a_{n-1} \alpha^{n-1}+\cdots+a_{1} \alpha+a_{0}=0
$$

for some $a_{i} \in A$. Therefore

$$
\alpha=-\left(a_{n-1}+a_{n-2} \alpha^{-1}+\cdots+a_{0} \alpha^{-(n-1)}\right) \in A
$$

which is a contradiction.

Note. As you can see in the above argument, if A is a subring of a field F and $\alpha \in F$, then α is integral over A if and only if $\alpha \in A\left[\alpha^{-1}\right]$.

The following is our main technical theorem on this subjection.
Theorem 10. Suppose Ω is an algebraically closed field, A_{0} is an integral domain, and $\theta_{0}: A_{0} \rightarrow \Omega$ is a ring homomorphism. Suppose A_{0} is a subring of a field F. Let

$$
\Sigma:=\left\{(B, \theta) \mid A \subseteq B \subseteq F \text { intermediate ring }, \theta \text { ring hom, }\left.\theta\right|_{A_{0}}=\theta_{0}\right\} .
$$

We say $(B, \theta) \preceq\left(B^{\prime}, \theta^{\prime}\right)$ if $B \subseteq B^{\prime}$ and $\left.\theta^{\prime}\right|_{B}=\theta$. Then Σ has a maximal element $(B, \theta), B$ is a valuation ring, its unique maximal ideal is $\operatorname{ker} \theta$, and F is the field of fractions of B.

Let's make a remark on why it is important to have a good understanding of $\operatorname{Hom}(A, \Omega)$. Suppose A is a finitely generated F-algebra; that implies that $A \simeq F\left[x_{1}, \ldots, x_{n}\right] / \mathfrak{a}$. Then there is a bijection between $\operatorname{Hom}_{F}(A, \Omega)$ and

$$
\left\{\phi \in \operatorname{Hom}_{F}\left(F\left[x_{1}, \ldots, x_{n}\right], \Omega\right) \mid \mathfrak{a} \subseteq \operatorname{ker} \phi\right\}
$$

On the other hand, there is a bijection between F-algebra homomorphism ϕ : $F\left[x_{1}, \ldots, x_{n}\right] \rightarrow \Omega$ and Ω^{n}; to any point $p \in \Omega^{n}$, we can associate the evaluation at p map ϕ_{p}; and any homomorphism is of this form. So we get a bijection between $\operatorname{Hom}_{F}(A, \Omega)$ and

$$
\left\{p \in \Omega^{n} \mid \forall f \in \mathfrak{a}, f(p)=0\right\} .
$$

So have a good understand of $\operatorname{Hom}(A, \Omega)$ helps us understand common zeros of a family of polynomials.

Proof of Theorem 10. Claim 1. Existence of a maximal element.
Proof of Claim 1. It is clear that (Σ, \preceq) is a non-empty POSet $\left(\left(A_{0}, \theta_{0}\right) \in \Sigma\right)$. To show that it has a maximal, by Zorn's lemma, it is enough to show any chain $\mathscr{C}:=\left\{\left(B_{i}, \theta_{i}\right)\right\}_{i \in I}$ in Σ has an upper bound.

Let $B:=\bigcup_{i \in I} B_{i}$ and $\theta: B \rightarrow \Omega, \theta(b):=\theta_{i}(b)$ if $b \in B_{i}$. For $b, b^{\prime} \in B$, there are $i, j \in I$ such that $b \in B_{i}$ and $b^{\prime} \in B_{j}$. Since \mathscr{C} is a chain, without loss of generality we can and will assume that $B_{i} \subseteq B_{j}$. Hence $b, b^{\prime} \in B_{j}$, which implies that $b+b^{\prime}, b b^{\prime} \in B_{j} \subseteq B$. Thus B is a subring of F.

If $b \in B_{i} \cap B_{j}$, then again as \mathscr{C} is a chain without loss of generality we can and will assume that $\left(B_{i}, \theta_{i}\right) \preceq\left(B_{j}, \theta_{j}\right)$; and so $\theta_{j} \mid B_{i}=\theta_{i}$, which implies that $\theta_{i}(b)=\theta_{j}(b)$. Hence θ is well-defined.

If $b, b^{\prime} \in B$, then as we discussed above, there is $i \in I$ such that $b, b^{\prime} \in B_{i}$. Hence $\theta\left(b+b^{\prime}\right)=\theta_{i}\left(b+b^{\prime}\right)=\theta_{i}(b)+\theta_{i}\left(b^{\prime}\right)=\theta(b)+\theta\left(b^{\prime}\right)$, and $\theta\left(b b^{\prime}\right)=\theta_{i}\left(b b^{\prime}\right)=$ $\theta_{i}(b) \theta_{i}\left(b^{\prime}\right)=\theta(b) \theta\left(b^{\prime}\right)$. Therefore θ is a ring homomorphism.

So (B, θ) is an upper bound of \mathscr{C}; thus by Zorn's lemma, Σ has a maximal element.

Claim 2. Suppose (B, θ) is a maximal element of Σ. Then B is a local ring and $\mathfrak{m}:=\operatorname{ker} \theta$ is it unique maximal ideal.

Note. At each step, we try to extend θ; and then use the maximality condition to get the desired property.

Proof of Claim 2. Since $B / \operatorname{ker} \theta$ can be embedded into Ω, it is an integral domain. Hence $\operatorname{ker} \theta$ is a prime ideal of B. As B is a subring of F, we get that $B_{\operatorname{ker} \theta} \subseteq F$. Since $\theta(B \backslash \operatorname{ker} \theta) \subseteq \Omega^{\times}$, by the universal property of localization, there is $\widehat{\theta}: B_{\text {ker } \theta} \rightarrow \Omega$ such that $\widehat{\theta}\left(\frac{b}{1}\right)=\theta(b)$. Hence $\left(B_{\text {ker } \theta}, \widehat{\theta}\right) \in \Sigma$ and $(B, \theta) \preceq$ $\left(B_{\mathrm{ker} \theta}, \widehat{\theta}\right)$. Since (B, θ) is maximal in Σ, we deduce that $B=B_{\mathrm{ker} \theta}$. Therefore B is a local ring and $\operatorname{ker} \theta$ is its unique maximal ideal.

Claim 3. For any $\alpha \in F$, either $\alpha \in B$ or $\alpha^{-1} \in B$.
To prove this claim, again we would like to extend θ to either $B[\alpha]$ or $B\left[\alpha^{-1}\right]$, and then use maximality of B to deduce the desired result. That means we have to find a ring homomorphism $\widehat{\theta}: B[\alpha] \rightarrow \Omega$ such that $\left.\widehat{\theta}\right|_{B}=\theta$; in particular, $\operatorname{ker} \widehat{\theta} \supseteq \operatorname{ker} \theta=: \mathfrak{m}$. Hence $\mathfrak{m}[\alpha]$ needs to be a proper ideal of $B[\alpha]$. So we start with the following subclaim.

Subclaim. For any $\alpha \in F^{\times}$, either $\mathfrak{m}[\alpha] \neq B[\alpha]$ or $\mathfrak{m}\left[\alpha^{-1}\right] \neq B\left[\alpha^{-1}\right]$.
Proof of Subclaim. Suppose to the contrary that $1 \in \mathfrak{m}[\alpha] \cap \mathfrak{m}\left[\alpha^{-1}\right]$. So there are $c_{i}, c_{i}^{\prime} \in \mathfrak{m}$ such that $1=c_{0}+c_{1} \alpha+\cdots+c_{n} \alpha^{n}$, and $1=c_{0}^{\prime}+c_{1}^{\prime} \alpha^{-1}+\cdots+c_{m}^{\prime} \alpha^{-m}$; and suppose m and n are smallest possible positive integers with these properties. Without loss of generality we can and will assume that $n \geq m$. Then

$$
\begin{aligned}
1=c_{0}^{\prime}+c_{1}^{\prime} \alpha^{-1}+\cdots+c_{m}^{\prime} \alpha^{-m} & \Rightarrow\left(1-c_{0}^{\prime}\right)=c_{1}^{\prime} \alpha^{-1}+\cdots+c_{m}^{\prime} \alpha^{-m} \\
\left(\text { since } B \text { is local, } 1+\mathfrak{m} \subseteq B^{\times}\right) & \Rightarrow 1=\left(1-c_{0}^{\prime}\right)^{-1}\left(c_{1}^{\prime} \alpha^{-1}+\cdots+c_{m}^{\prime} \alpha^{-m}\right) \\
\left(\text { for some } c_{i}^{\prime \prime} \in \mathfrak{m}\right) & \Rightarrow 1=c_{1}^{\prime \prime} \alpha^{-1}+\cdots+c_{m}^{\prime \prime} \alpha^{-m} \\
& \Rightarrow \alpha=c_{1}^{\prime \prime}+\cdots+c_{m}^{\prime \prime} \alpha^{-(m-1)} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
1 & =c_{0}+c_{1} \alpha+\cdots+c_{n} \alpha^{n} \\
& =c_{0}+c_{1} \alpha+\cdots+c_{n} \alpha^{n-1}(\alpha) \\
& =c_{0}+c_{1} \alpha+\cdots+c_{n} \alpha^{n-1}\left(c_{1}^{\prime \prime}+\cdots+c_{m}^{\prime \prime} \alpha^{-(m-1)}\right)=c_{0}^{\prime \prime \prime}+c_{1}^{\prime \prime \prime} \alpha+\cdots+c_{n-1}^{\prime \prime \prime} \alpha^{n-1},
\end{aligned}
$$

for some $c_{i}^{\prime \prime \prime} \in \mathfrak{m}$ which contradicts minimality of n.
Proof of Claim 3. By Subclaim, without loss of generality we can and will assume that $\mathfrak{m}[\alpha]$ is a proper ideal of $B[\alpha]$. Hence there is a maximal ideal \mathfrak{m}^{\prime} of $B[\alpha]$ that contains \mathfrak{m} as a subset. Therefore $\mathfrak{m}^{\prime} \cap B \supseteq \mathfrak{m}$; and as \mathfrak{m} is a maximal ideal, we deduce that $B \cap \mathfrak{m}^{\prime}=\mathfrak{m}$. Thus B / \mathfrak{m} can be embedded into $B[\alpha] / \mathfrak{m}^{\prime} ;$ and $B[\alpha] / \mathfrak{m}^{\prime}=k(\mathfrak{m})[\bar{\alpha}]$ where $k(\mathfrak{m})$ is the copy of B / \mathfrak{m} in $B[\alpha] / \mathfrak{m}^{\prime}$ and $\bar{\alpha}:=\alpha+\mathfrak{m}^{\prime}$. Since $k(\mathfrak{m})[\bar{\alpha}]$ is a field extension of $k(\mathfrak{m})$, we deduce that it is a finite extension. Hence the embedding of $k(\mathfrak{m})$ in Ω can be extended to an embedding of $k(\mathfrak{m})[\bar{\alpha}]$ into Ω. Overall we get the following commuting diagram:

And s we get an extension of θ to $B[\alpha]$. Therefore by the maximality of (B, θ), we deduce that $\alpha \in B$; and claim follows.

