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GETTING NOETHERIAN CONDITION FOR SOME INTEGRAL CLOSURES.

In the previous lecture we were proving the following result.

Theorem 1. Suppose A is an integrally closed integral domain. Suppose F' is a
field of fractions of A, and E/F is a finite separable field extension. Let B be the
integral closure of A in E. Then there are eq, ..., e, € E such that

(1) B C Ae; + - + Ae,.
In particular, if A is Noetherian, then B is Noetherian.

We have already pointed out how to deduce that B is Noetherian if A is. We

have also proved a few lemmas. Let us recall a few of them.

Lemma 2. Suppose E/F is a finite separable field extension. Then
(1) |Embedr(E,F)| = [E : F] where F is an algebraic closure of F and
Embedr(E, F) is the set of F-embeddings of E into F.
(2) Trpyr(a) = 3 cpmpedp ) (@) = Tr(la) where ly : B — E.ly(e) = ae
is viewed as an F-linear map; in particular, Trg/p(E) C F.

Lemma 3. Suppose E/F is a finite separable field extension. Then h(e,€’) :=

Trg/r(ee’) is a non-degenerate symmetric bilinear form.

Lemma 4. Suppose V is a finite-dimensional F-vector space, and h : V xV — F
is a non-degenerate F-bilinear map. Suppose {vi,...,v,} is an F-basis of V.
Then there is a dual basis {wy, ..., w,} with respect to h; that means it is an

F-basis and for any i, 7 we have

1 ifi=j
0 ifi#j.

The last needed lemma is the following:

h(?)i, 'U)j) =
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Lemma 5. Suppose A is an integral domain, F is its field of fractions, E/F

1s an algebraic extension, and B is the integral closure of A in E. Then E =

(A\{o})~'B.

Proof. Let € E. Then (3 satisfies an equation with coefficients in F'; that means
B+ B+ aB+ =0

for some ¢; € F. Taking a common denominator for ¢;’s, we find a € A such that
a; := ac; € A. Then

af™ + ap_1 "N 4+ a8+ ag = 0.
After multiplying both sides by a"!, we get
(aB)" + an_1(aB)" ' + -+ a" 2a1(aB) + a" 'ag = 0,
which means af is integral over A. Hence a8 € B and 3 = ? e (A\{oh)'B. O

Proof of Theorem 1. Let {f,..., 5.} bean F-basis of E. By the previous lemma,
there is a € A such that b; :== af; € B. Since a € A C F, {by,...,b,} is an
F-basis of E. Let {ej,...,e,} be a dual basis of £ with respect to the bilinear
form h(z,y) := Trg/r(2y). Hence for any b € B there are ¢; € F such that

b=cie; + -+ cpeén;

this implies (b, b;) = h(cier + -+ + cnen, bi) = >, ¢jh(e;, b)) = ¢;. On the other
hand, h(b,b;) = > 7_, o(bb;) where {0y,...,0,} are all the F-embeddings of E
into an algebraic closure F of F. As bb; € B, they are integral over A; and so are
ok (bbj). Thus h(b, f;) is integral over A, and it is in F'. As A is integrally closed,
we deduce that h(b,b;) € A. Altogether, we get

be Aey + -+ Aey;
and claim follows. 0
Corollary 6. As an additive group Oy, is isomorphic to Z*.
Proof. Since Z is integrally closed, we can apply Theorem 1 and deduce that

O, C Zey + -+ Ze,,

for some e; € k. This implies that &} is a subgroup of a torsion-free finitely
generated abelian group. Hence 0}, is a finite rank abelian group; say @), ~ Z.
Since (Z \ {0})7'0, = k, we deduce that d = [K : Q]; and claim follows. O
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VALUATION RINGS

We start with a technical definition and theorem; and then deduce many im-

portant results.

Definition 7. An integral domain A is called a valuation ring if for any element
a of its field of fractions F, either o« € A or a~! € A.

Example 8. Let A := {™|m,n € Z,2 { n}; then A is a valuation ring. More
generally if D is a UFD and p € D is irreducible, then Dy, == {¢| a,b € D,p{b}

s a valuation ring.

In your homework assignment you will see the definition of a valuation; and

you will see that a ring is a valuation ring if and only if there is a valuation v of
F and A= {a € Flv(a) > 0}.

Proposition 9. Suppose A is a valuation ring and F' is its field of fractions.
Then

(1) A is a local ring.
(2) If AC A" C F, then A’ is a valuation ring.
(8) A is integrally closed.

Proof. (1) Let m := A\ A*. For a € m and b € A, clearly ab € m (if the product
of two elements has an inverse, then both of them have).

If a,b € m\ {0}, then either ¢ € A or 2 € A. This implies that either
(1+9%) € Aor (1+2) € A; and so either a(1+2) € mor b(1+ ¢) € m. In either
case, we deduce that a +b € m. Hence m is an ideal of A. Therefore it is the
unique maximal ideal as its complement consists of units.

(2) is clear.

(3) Suppose a € F' is integral over A. And suppose to the contrary that « is
not in A. Hence a~! € A and

Q" +a, 10"+ aga+ag =0
for some a; € A. Therefore
_ -1 —(n-1)
a=—(ap1+a, 207 + -+ ap )eA

which is a contradiction. O
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Note. As you can see in the above argument, if A is a subring of a field F
and a € F, then « is integral over A if and only if o € Ala™].

The following is our main technical theorem on this subjection.

Theorem 10. Suppose €1 is an algebraically closed field, Aq is an integral domain,
and 0y : Ag — Q is a ring homomorphism. Suppose Ag is a subring of a field F.
Let

Y. :={(B,0)| A C B C F intermediate ring ,0 ring hom, 0|4, = 0y}.

We say (B,0) = (B',0") if BC B and ¢'|g = 0. Then ¥ has a mazimal element
(B,0), B is a valuation ring, its unique mazimal ideal is ker 0, and F' is the field
of fractions of B.

Let’s make a remark on why it is important to have a good understanding
of Hom(A4, ). Suppose A is a finitely generated F-algebra; that implies that
A~ Flxy,...,x,]/a. Then there is a bijection between Homp(A, 2) and

{¢ € Homp(F[x1,...,2,],Q)] a C ker ¢}.

On the other hand, there is a bijection between F-algebra homomorphism ¢ :
Flzy,...,2,] = Q and Q"; to any point p € Q" we can associate the evaluation
at p map ¢,; and any homomorphism is of this form. So we get a bijection
between Hompg(A, 2) and

{peQ"Vfea, f(p) =0}

So have a good understand of Hom(A, 2) helps us understand common zeros of

a family of polynomials.

Proof of Theorem 10. Claim 1. Fuxistence of a maximal element.

Proof of Claim 1. Tt is clear that (X2, <) is a non-empty POSet ((Ag, fy) € X).
To show that it has a maximal, by Zorn’s lemma, it is enough to show any chain
% :={(Bi,0;) }ier in ¥ has an upper bound.

Let B := J,c; Bi and § : B — Q,0(b) := 0;(b) if b € B;. For b, € B, there
are i,j € I such that b € B; and b’ € B;. Since € is a chain, without loss of
generality we can and will assume that B; C B;. Hence b,V € B;, which implies
that b+ b',b0' € B; C B. Thus B is a subring of F.



MATH200C, LECTURE 13 5

If b € B, N Bj, then again as ¢ is a chain without loss of generality we can
and will assume that (B;,6;) = (B;,6;); and so 6;|B; = 6;, which implies that
6;(b) = 0;(b). Hence 0 is well-defined.

If b,b' € B, then as we discussed above, there is ¢ € I such that b, € B;.
Hence (b +b") = 6;(b+b') = 60;(b) + 0;(b') = 6(b) + ('), and O(bV') = 6,(bb) =
0;(0)0;(b') = 0(b)O(V'). Therefore 0 is a ring homomorphism.

So (B,#0) is an upper bound of ¢’; thus by Zorn’s lemma, ¥ has a maximal
element.

Claim 2. Suppose (B,0) is a mazimal element of .. Then B is a local ring
and m := ker 0 is it unique mazimal ideal.

Note. At each step, we try to extend 6; and then use the maximality condition
to get the desired property.

Proof of Claim 2. Since B/kerf can be embedded into €2, it is an integral
domain. Hence ker @ is a prime ideal of B. As B is a subring of F', we get that
Byers € F. Since 6(B \ kerf) C Q*, by the universal property of localization,
there is 6 : Bierg — Q such that 5(%) = 6(b). Hence (Bkerg,é\) € ¥ and (B,6) <
(Byero, 5) Since (B, #) is maximal in ¥, we deduce that B = Byeg. Therefore B
is a local ring and ker # is its unique maximal ideal.

Claim 3. For any o € F, either o« € B or a™! € B.

To prove this claim, again we would like to extend 6 to either Bla] or Bla™],
and then use maximality of B to deduce the desired result. That means we have
to find a ring homomorphism 0:B [a] — € such that 5\3 = #; in particular,
kerf O kerf =: m. Hence m[a] needs to be a proper ideal of Bla]. So we start
with the following subclaim.

Subclaim. For any o € F*, either m[a] # Bla] or m[a™!] # Bla™!].

Proof of Subclaim. Suppose to the contrary that 1 € m{a] Nm[a~!]. So there
are ¢;, ¢; € msuch that 1 = ¢co+cia+---+¢,0", and 1= ¢g+dat+--+d,a™™;
and suppose m and n are smallest possible positive integers with these properties.

Without loss of generality we can and will assume that n > m. Then

l=cd+cdat+ -+ am=1~-c)=cat+ -+ a™

(since Bislocal, 1+ mC BX) =1=(1—c) '(dat + -+, a™)
(for some ¢/ em) =1 =cla ' +---+la™

=a=d + -+ cda MmN,
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Hence
1=co+ca+- - +c,a"

=co+ cra+ - + " (a)

-1/ .1 /"N —(m—1 1 mn n —1
=co+crat-Fe,ad N+ ™) = a0

for some ¢ € m which contradicts minimality of n.

Proof of Claim 3. By Subclaim, without loss of generality we can and will
assume that m[a] is a proper ideal of Bla]. Hence there is a maximal ideal m’ of
Bla] that contains m as a subset. Therefore m’ N B O m; and as m is a maximal
ideal, we deduce that BNm’ = m. Thus B/m can be embedded into B[a]/m’; and
Bla]/m’ = k(m)[@] where k(m) is the copy of B/m in Bla|/m’ and @ := o + m'.
Since k(m)[a] is a field extension of k(m), we deduce that it is a finite extension.
Hence the embedding of k(m) in © can be extended to an embedding of k(m)[@]

into €2. Overall we get the following commuting diagram:

B —— Bla]

l

And s we get an extension of 6 to Bla]. Therefore by the maximality of (B, ),

we deduce that a € B; and claim follows. O



