1 Homework 2.

- 1. Suppose p is a prime number and S_p is the symmetric group.
 - (a) Let P be a Sylow p-subgroup of S_p . Prove that $N_{S_p}(P)$ is isomorphic to $(\mathbb{Z}/p\mathbb{Z}) \rtimes (\mathbb{Z}/p\mathbb{Z})^{\times}$.
 - (b) Suppose G is a subgroup of S_p and G has two Sylow p-subgroups. Prove that G is not solvable.
 - (c) Suppose $G \subseteq S_p$ is solvable and p||G|. Prove that the number of fixed points of every non-trivial element of G is at most 1.
 - (d) Suppose for every g ∈ G \ {id} the number of fixed points of g is at most 1. Prove that G has a normal subgroup P of order p and G/P is cyclic. In particular, G is solvable.
 - (e) Suppose G is a subgroup of S_p and p||G|. Prove that G is solvable if and only if for every $g \in G \setminus \{id\}, g$ fixes at most one point.

(**Hint.** For part (a), notice that if P_1 and P_2 are two distinct Sylow *p*-subgroups of S_p , then $|P_1 \cap P_2| = 1$. Argue that the union of all the Sylow *p*-subgroups of S_p consists of the identity and all the *p*-cycles. Deduce that $|N_{S_p}(P)| = p(p-1)$. Consider the affine action

$$(a,b) \in (\mathbb{Z}/p\mathbb{Z}) \rtimes (\mathbb{Z}/p\mathbb{Z})^{\times} \curvearrowright \mathbb{Z}/p\mathbb{Z}, \quad (a,b) \cdot x := bx + a,$$

and argue why this gives an embedding of $(\mathbb{Z}/p\mathbb{Z}) \rtimes (\mathbb{Z}/p\mathbb{Z})^{\times}$ into $N_{S_p}(P)$ for some Sylow *p*-subgroup of S_p .

For part (b), first argue that if $\{X_1, \ldots, X_k\}$ is a partition of $\{1, \ldots, p\}$ which is invariant under G, then k = 1 or p. This is the case because if k < p, then every p-cycle has to send each X_i to itself. Then $X_1 = \{1, \ldots, p\}$ and k = 1. Next, notice that if N is a normal subgroup of G, then the set $N \setminus {1, \ldots, p}$ of N-orbits is invariant under G. Deduce that if N is a non-trivial normal subgroup of G, then N acts transitively on $\{1, \ldots, p\}$. Now prove the claim by induction on |G|. If G = [G, G], then G is not solvable. If not, then N := [G, G] acts transitively on $\{1, \ldots, p\}$. Prove that if P is a Sylow p-subgroup of G, then $P \subseteq N$; otherwise show that $p \nmid |N|$, and so Ncannot act transitively on $\{1, \ldots, p\}$. By the induction hypothesis, deduce that [G, G] is not solvable, and finish the proof. For part (c), notice that by part (b), G has only one Sylow p-subgroup P, and so $G \subseteq N_{S_p}(P)$. Finish the proof using part (a).

For part (d), let G_1 be the stabilizer subgroup of 1. Then $|G| = p|G_1|$ and $G_1 \cap G_2 = \{1\}$, and so

$$G_1 \to \{2, \dots, p\}, \quad g \mapsto g(2)$$

is injective. Hence $|G_1| \leq p-1$. Use Sylow's theorems and show $n_p = 1$. Consider the action of G_1 on the Sylow subgroup P by conjugation, and show that this gives us an embedding of G_1 into $\operatorname{Aut}(P) \simeq \mathbb{Z}/(p-1)\mathbb{Z}$. Deduce that G_1 is cyclic. Argue why $G \simeq P \rtimes G_1$ and finish the proof.

Part (e) is an immediate consequence of parts (c) and (d).)

(**Remark**. This result is due to Galois, and he used it in combination with his result on solvability of polynomials by radicals.)

- 2. Suppose p is prime, $f \in F[x]$ is irreducible, deg f = p, and E is a splitting field of f over F. Suppose f has p distinct zeros in E.
 - (a) Prove that there exists $\phi \in \operatorname{Aut}_F(E)$ and $\alpha \in E$ such that

$$f(x) = (x - \alpha)(x - \phi(\alpha)) \cdots (x - \alpha^{p-1}(\alpha)).$$

(b) Prove that $\operatorname{Aut}_F(E)$ is solvable if and only if for every two distinct zeros α and α' of f in E we have

$$\operatorname{Aut}_{F[\alpha,\alpha']}(E) = {\operatorname{id}}.$$

(Hint. For part (b), use problem 1.)

3. Suppose $f \in \mathbb{Q}[x]$ is a monic irreducible polynomial of degree p where p is prime. Suppose $E \subseteq \mathbb{C}$ is a splitting field of f over \mathbb{Q} . Suppose f has exactly two non-real roots. Prove that $\operatorname{Aut}_{\mathbb{Q}}(E) \simeq S_p$.

(**Hint.** View $\operatorname{Aut}_{\mathbb{Q}}(E)$ as a subgroup G of S_p . Argue why it has an element of order p, and deduce that it has p-cycle. Show that the complex conjugation gives us a transposition in G. Use a result from group theory (Math200a, HW4, P4(b)).)

4. Suppose E/F is an algebraic extension. Let

 $E_{\text{sep}} := \{ \alpha \in E \mid m_{\alpha,F} \text{ is separable in } F[x] \}.$

- (a) Prove that E_{sep} is a subfield of E and E_{sep}/F is a separable extension.
- (b) Suppose char(F) = p > 0. Prove that for every $\alpha \in E$,

$$m_{\alpha, E_{\text{sep}}}(x) = x^{p^k} - \alpha^{p^l}$$

for some non-negative integer k. In particular, $\alpha^{p^k} \in E_{sep}$ for some non-negative integer k.

(**Hint.** Part (a); for $\alpha, \beta \in E_{sep}$, consider a splitting field L of $m_{\alpha,F}m_{\beta,F}$ over F. Argue why L/F is a separable extension, and deduce that $\alpha \pm \beta$ and $\alpha\beta^{\pm 1}$ are in E_{sep} . Hence, E_{sep} is a subfield of E, and clearly E_{sep}/E is a separable extension.

Part (b); for every irreducible polynomial $f(x) \in F[x]$, find a non-negative integer k and a separable irreducible polynomial $f_{sep} \in F[x]$ such that $f(x) = f_{sep}(x^{p^k})$; to show this notice that if f is irreducible but not separable, then f'(x) = 0, and so $f(x) = f_1(x^p)$ for some irreducible polynomial $f_1(x) \in F[x]$. Use this to show that for every $\alpha \in E$, there exists an irreducible and separable polynomial $f_{\alpha} \in F[x]$ such that $m_{\alpha,F}(x) = f_{\alpha}(x^{p^k})$. Deduce that $f_{\alpha} = m_{\alpha^{p^k},F}$, and so $\alpha^{p^k} \in E_{sep}$; in particular $E^{\times}/E_{sep}^{\times}$ is a pgroup. Suppose p^k is the order of αE_{sep}^{\times} . Then $m_{\alpha,E_{sep}}(x)$ divides $x^{p^k} - \alpha^{p^k}$. Deduce that $m_{\alpha,E_{sep}}(x) = (x - \alpha)^m$ for some positive integer m. Then $\alpha^m \in E_{sep}^{\times}$, and so $p^k | m$. Finish the proof.)

(**Remark.** The field E_{sep} is called the separable closure of F in E.)

- 5. Suppose E/F is a normal extension. Prove that E_{sep}/F is a Galois extension.
- 6. Suppose $F \subseteq E \subseteq K$ is a tower of fields, and K/F is an algebraic extension. Prove that K/F is separable if and only if K/E and E/F are separable.

(**Hint.** (\Leftarrow) For every $\alpha \in K$, $m_{\alpha,E}(x)|m_{\alpha,F}(x)$ in E[x]; and so if $m_{\alpha,F}(x)$ is separable, then $m_{\alpha,E}(x)$ is separable.

 (\Rightarrow) Let K_{sep} be the separable closure of F in K. Then $E \subseteq K_{\text{sep}}$, and so by the converse statement, K/K_{sep} is a separable extension. On the other hand, for every $\alpha \in K$, $m_{\alpha, K_{sep}}(x) = x^{p^k} - \alpha^{p^k}$ for some non-negative integer k. Deduce that k = 0, and so $\alpha \in K_{sep}$. Therefore $K = K_{sep}$.)

7. Suppose p is a prime and $E \subseteq \mathbb{C}$ is a splitting field of $x^p - 2$ over \mathbb{Q} . Prove that

$$\operatorname{Aut}_{\mathbb{Q}}(E) \simeq \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid b \in \mathbb{Z}/p\mathbb{Z}, a \in (\mathbb{Z}/p\mathbb{Z})^{\times} \right\}.$$

(**Hint.** Recall why $E = \mathbb{Q}[\zeta_p, \sqrt[p]{2}]$ and $[E : \mathbb{Q}] = p(p-1)$. Deduce that $|\operatorname{Aut}_{\mathbb{Q}}(E)| = p(p-1)$ and every $\phi \in \operatorname{Aut}_{\mathbb{Q}}(E)$ is uniquely determined by the pair $(\phi(\zeta_p), \phi(\sqrt[p]{2}))$. Deduce that for every $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and $b \in \mathbb{Z}/p\mathbb{Z}$ there exists a unique $\phi_{a,b} \in \operatorname{Aut}_{\mathbb{Q}}(E)$ such that

$$\phi_{a,b}(\zeta_p) = \zeta_p^a \quad \text{and} \quad \phi_{a,b}(\sqrt[p]{2}) = \sqrt[p]{2}\zeta_p^b;$$

moreover

$$\operatorname{Aut}_{\mathbb{Q}}(E) = \{ \phi_{a,b} \mid a \in (\mathbb{Z}/p\mathbb{Z})^{\times}, b \in \mathbb{Z}/p\mathbb{Z} \}.$$

Finally notice that

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mapsto \phi_{a,b}$$

is an isomorphism.)