1 Homework 2.

1. Suppose p is a prime number and S_{p} is the symmetric group.
(a) Let P be a Sylow p-subgroup of S_{p}. Prove that $N_{S_{p}}(P)$ is isomorphic to $(\mathbb{Z} / p \mathbb{Z}) \rtimes(\mathbb{Z} / p \mathbb{Z})^{\times}$.
(b) Suppose G is a subgroup of S_{p} and G has two Sylow p-subgroups. Prove that G is not solvable.
(c) Suppose $G \subseteq S_{p}$ is solvable and $p \| G \mid$. Prove that the number of fixed points of every non-trivial element of G is at most 1 .
(d) Suppose for every $g \in G \backslash\{\mathrm{id}\}$ the number of fixed points of g is at most 1. Prove that G has a normal subgroup P of order p and G / P is cyclic. In particular, G is solvable.
(e) Suppose G is a subgroup of S_{p} and $p||G|$. Prove that G is solvable if and only if for every $g \in G \backslash\{\mathrm{id}\}, g$ fixes at most one point.
(Hint. For part (a), notice that if P_{1} and P_{2} are two distinct Sylow psubgroups of S_{p}, then $\left|P_{1} \cap P_{2}\right|=1$. Argue that the union of all the Sylow p-subgroups of S_{p} consists of the identity and all the p-cycles. Deduce that $\left|N_{S_{p}}(P)\right|=p(p-1)$. Consider the affine action

$$
(a, b) \in(\mathbb{Z} / p \mathbb{Z}) \rtimes(\mathbb{Z} / p \mathbb{Z})^{\times} \curvearrowright \mathbb{Z} / p \mathbb{Z}, \quad(a, b) \cdot x:=b x+a,
$$

and argue why this gives an embedding of $(\mathbb{Z} / p \mathbb{Z}) \rtimes(\mathbb{Z} / p \mathbb{Z})^{\times}$into $N_{S_{p}}(P)$ for some Sylow p-subgroup of S_{p}.

For part (b), first argue that if $\left\{X_{1}, \ldots, X_{k}\right\}$ is a partition of $\{1, \ldots, p\}$ which is invariant under G, then $k=1$ or p. This is the case because if $k<p$, then every p-cycle has to send each X_{i} to itself. Then $X_{1}=\{1, \ldots, p\}$ and $k=1$. Next, notice that if N is a normal subgroup of G, then the set ${ }_{N} \backslash^{\{1, \ldots, p\}}$ of N-orbits is invariant under G. Deduce that if N is a non-trivial normal subgroup of G, then N acts transitively on $\{1, \ldots, p\}$. Now prove the claim by induction on $|G|$. If $G=[G, G]$, then G is not solvable. If not, then $N:=[G, G]$ acts transitively on $\{1, \ldots, p\}$. Prove that if P is a Sylow p-subgroup of G, then $P \subseteq N$; otherwise show that $p \nmid|N|$, and so N cannot act transitively on $\{1, \ldots, p\}$. By the induction hypothesis, deduce that $[G, G]$ is not solavable, and finish the proof.

For part (c), notice that by part (b), G has only one Sylow p-subgroup P, and so $G \subseteq N_{S_{p}}(P)$. Finish the proof using part (a).

For part (d), let G_{1} be the stabilizer subgroup of 1 . Then $|G|=p\left|G_{1}\right|$ and $G_{1} \cap G_{2}=\{1\}$, and so

$$
G_{1} \rightarrow\{2, \ldots, p\}, \quad g \mapsto g(2)
$$

is injective. Hence $\left|G_{1}\right| \leq p-1$. Use Sylow's theorems and show $n_{p}=1$. Consider the action of G_{1} on the Sylow subgroup P by conjugation, and show that this gives us an embedding of G_{1} into $\operatorname{Aut}(P) \simeq \mathbb{Z} /(p-1) \mathbb{Z}$. Deduce that G_{1} is cyclic. Argue why $G \simeq P \rtimes G_{1}$ and finish the proof.

Part (e) is an immediate consequence of parts (c) and (d).)
(Remark. This result is due to Galois, and he used it in combination with his result on solvability of polynomials by radicals.)
2. Suppose p is prime, $f \in F[x]$ is irreducible, $\operatorname{deg} f=p$, and E is a splitting field of f over F. Suppose f has p distinct zeros in E.
(a) Prove that there exists $\phi \in \operatorname{Aut}_{F}(E)$ and $\alpha \in E$ such that

$$
f(x)=(x-\alpha)(x-\phi(\alpha)) \cdots\left(x-\alpha^{p-1}(\alpha)\right) .
$$

(b) Prove that $\operatorname{Aut}_{F}(E)$ is solvable if and only if for every two distinct zeros α and α^{\prime} of f in E we have

$$
\operatorname{Aut}_{F\left[\alpha, \alpha^{\prime}\right]}(E)=\{\mathrm{id}\} .
$$

(Hint. For part (b), use problem 1.)
3. Suppose $f \in \mathbb{Q}[x]$ is a monic irreducible polynomial of degree p where p is prime. Suppose $E \subseteq \mathbb{C}$ is a splitting field of f over \mathbb{Q}. Suppose f has exactly two non-real roots. Prove that $\operatorname{Aut}_{\mathbb{Q}}(E) \simeq S_{p}$.
(Hint. View $\operatorname{Aut}_{\mathbb{Q}}(E)$ as a subgroup G of S_{p}. Argue why it has an element of order p, and deduce that it has p-cycle. Show that the complex conjugation gives us a transposition in G. Use a result from group theory (Math200a, HW4, P4(b)).)
4. Suppose E / F is an algebraic extension. Let

$$
E_{\text {sep }}:=\left\{\alpha \in E \mid m_{\alpha, F} \text { is separable in } F[x]\right\}
$$

(a) Prove that $E_{\text {sep }}$ is a subfield of E and $E_{\text {sep }} / F$ is a separable extension.
(b) Suppose char $(F)=p>0$. Prove that for every $\alpha \in E$,

$$
m_{\alpha, E_{\mathrm{sep}}}(x)=x^{p^{k}}-\alpha^{p^{k}}
$$

for some non-negative integer k. In particular, $\alpha^{p^{k}} \in E_{\text {sep }}$ for some non-negative integer k.
(Hint. Part (a); for $\alpha, \beta \in E_{\text {sep }}$, consider a splitting field L of $m_{\alpha, F} m_{\beta, F}$ over F. Argue why L / F is a separable extension, and deduce that $\alpha \pm \beta$ and $\alpha \beta^{ \pm 1}$ are in $E_{\text {sep }}$. Hence, $E_{\text {sep }}$ is a subfield of E, and clearly $E_{\text {sep }} / E$ is a separable extension.
Part (b); for every irreducible polynomial $f(x) \in F[x]$, find a non-negative integer k and a separable irreducible polynomial $f_{\text {sep }} \in F[x]$ such that $f(x)=f_{\text {sep }}\left(x^{p^{k}}\right)$; to show this notice that if f is irreducible but not separable, then $f^{\prime}(x)=0$, and so $f(x)=f_{1}\left(x^{p}\right)$ for some irreducible polynomial $f_{1}(x) \in F[x]$. Use this to show that for every $\alpha \in E$, there exists an irreducible and separable polynomial $f_{\alpha} \in F[x]$ such that $m_{\alpha, F}(x)=f_{\alpha}\left(x^{p^{k}}\right)$. Deduce that $f_{\alpha}=m_{\alpha^{p^{k}}, F}$, and so $\alpha^{p^{k}} \in E_{\text {sep }}$; in particular $E^{\times} / E_{\text {sep }}^{\times}$is a p group. Suppose p^{k} is the order of $\alpha E_{\text {sep }}^{\times}$. Then $m_{\alpha, E_{\text {sep }}}(x)$ divides $x^{p^{k}}-\alpha^{p^{k}}$. Deduce that $m_{\alpha, E_{\text {sep }}}(x)=(x-\alpha)^{m}$ for some positive integer m. Then $\alpha^{m} \in E_{\text {sep }}^{\times}$, and so $p^{k} \mid m$. Finish the proof.)
(Remark. The field $E_{\text {sep }}$ is called the separable closure of F in E.)
5. Suppose E / F is a normal extension. Prove that $E_{\text {sep }} / F$ is a Galois extension.
6. Suppose $F \subseteq E \subseteq K$ is a tower of fields, and K / F is an algebraic extension. Prove that K / F is separable if and only if K / E and E / F are separable.
(Hint. (\Leftarrow) For every $\alpha \in K, m_{\alpha, E}(x) \mid m_{\alpha, F}(x)$ in $E[x]$; and so if $m_{\alpha, F}(x)$ is separable, then $m_{\alpha, E}(x)$ is separable.
(\Rightarrow) Let $K_{\text {sep }}$ be the separable closure of F in K. Then $E \subseteq K_{\text {sep }}$, and so by the converse statement, $K / K_{\text {sep }}$ is a separable extension. On the other
hand, for every $\alpha \in K, m_{\alpha, K_{\text {sep }}}(x)=x^{p^{k}}-\alpha^{p^{k}}$ for some non-negative integer k. Deduce that $k=0$, and so $\alpha \in K_{\text {sep }}$. Therefore $K=K_{\text {sep }}$.)
7. Suppose p is a prime and $E \subseteq \mathbb{C}$ is a splitting field of $x^{p}-2$ over \mathbb{Q}. Prove that

$$
\operatorname{Aut}_{\mathbb{Q}}(E) \simeq\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, b \in \mathbb{Z} / p \mathbb{Z}, a \in(\mathbb{Z} / p \mathbb{Z})^{\times}\right\}
$$

(Hint. Recall why $E=\mathbb{Q}\left[\zeta_{p}, \sqrt[p]{2}\right]$ and $[E: \mathbb{Q}]=p(p-1)$. Deduce that $\left|\operatorname{Aut}_{\mathbb{Q}}(E)\right|=p(p-1)$ and every $\phi \in \operatorname{Aut}_{\mathbb{Q}}(E)$ is uniquely determined by the pair $\left(\phi\left(\zeta_{p}\right), \phi(\sqrt[p]{2})\right)$. Deduce that for every $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$and $b \in \mathbb{Z} / p \mathbb{Z}$ there exists a unique $\phi_{a, b} \in \operatorname{Aut}_{\mathbb{Q}}(E)$ such that

$$
\phi_{a, b}\left(\zeta_{p}\right)=\zeta_{p}^{a} \quad \text { and } \quad \phi_{a, b}(\sqrt[p]{2})=\sqrt[p]{2} \zeta_{p}^{b}
$$

moreover

$$
\operatorname{Aut}_{\mathbb{Q}}(E)=\left\{\phi_{a, b} \mid a \in(\mathbb{Z} / p \mathbb{Z})^{\times}, b \in \mathbb{Z} / p \mathbb{Z}\right\}
$$

Finally notice that

$$
\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right) \mapsto \phi_{a, b}
$$

is an isomorphism.)

