1 Homework 6.

1. Suppose $f : A \to B$ is a ring homomorphism. For $\mathfrak{p} \in \operatorname{Spec}(A)$, let $S_{\mathfrak{p}} := A \setminus \mathfrak{p}, A_{\mathfrak{p}} := S_{\mathfrak{p}}^{-1}A, k(\mathfrak{p}) := A_{\mathfrak{p}}/S_{\mathfrak{p}}^{-1}\mathfrak{p}$, and $B_{\mathfrak{p}} := f(S_{\mathfrak{p}})^{-1}B$. Prove that

$$B \otimes_A k(\mathfrak{p}) \simeq \frac{B_{\mathfrak{p}}}{f(S_{\mathfrak{p}})^{-1}\mathfrak{p}^e}$$

(**Hint.** Show that $b \otimes (\frac{a}{s} + S_{\mathfrak{p}}^{-1}\mathfrak{p}) \mapsto \frac{f(a)b}{f(s)} + f(S_{\mathfrak{p}})^{-1}\mathfrak{p}^{e}$ is a well-defined ring homomorphism. Next, consider the function from $B_{\mathfrak{p}}$ to $B \otimes_{A} k(\mathfrak{p})$ given by $\frac{b}{f(s)} \mapsto b \otimes \frac{1}{s}$; notice that if $s_1, s_2 \in S$ and $f(s_1) = f(s_2)$, then

$$b \otimes \frac{1}{s_1} - b \otimes \frac{1}{s_2} = b \otimes \frac{s_2 - s_1}{s_1 s_2} = bf(s_2 - s_1) \otimes \frac{1}{s_1 s_2} = 0,$$

and so the given function is well-defined. Check that it is a ring homomorphism, and $f(S_{\mathfrak{p}})^{-1}\mathfrak{p}^{e}$ is in its kernel. Therefore,

$$\frac{b}{f(s)} + f(S_{\mathfrak{p}})^{-1}\mathfrak{p}^e \mapsto b \otimes \frac{1}{s}$$

is a well-defined ring homomorphism. Show that these given ring homomorphisms are inverse of each other.)

(**Remark**. In class, we showed that there exists a natural bijection between the fiber $(f^*)^{-1}(\mathfrak{p})$ and $\operatorname{Spec}(\frac{B_{\mathfrak{p}}}{f(S_{\mathfrak{p}})^{-1}\mathfrak{p}^e})$. Based on this exercise, you see that there exists a natural bijection between $(f^*)^{-1}(\mathfrak{p})$ and $\operatorname{Spec}(B \otimes_A k(\mathfrak{p}))$. This can be better seen as the fiber product of $\operatorname{Spec}(B)$ and $\operatorname{Spec}(k(\mathfrak{p}))$ over $\operatorname{Spec}(A)!$)

2. Suppose $\mathfrak{a}, \mathfrak{b}_1, \mathfrak{b}_2, \ldots, \mathfrak{b}_k \leq A$,

$$\mathfrak{a} \subseteq \bigcup_{i=1}^{\kappa} \mathfrak{b}_i, \text{ and } \mathfrak{a} \not\subseteq \bigcup_{1 \leq i \leq k, i \neq j} \mathfrak{b}_i$$

for every $1 \leq j \leq k$. Then there exists a positive integer n such that $\mathfrak{a}^n \subseteq \bigcap_{i=1}^k \mathfrak{b}_i$.

(**Hint**. Use strong induction on k; show that $\mathfrak{a} \subseteq \mathfrak{b}_1 \cup \mathfrak{b}_2$ implies $\mathfrak{a} \subseteq \mathfrak{b}_i$ for some *i*. Show the claim for k = 3 as well. Argue why $\mathfrak{b}_i \cap \mathfrak{a}$'s also satisfy the above conditions; and so W.L.O.G. we can assume that $\mathfrak{a} = \bigcup_{i=1}^k \mathfrak{b}_i$. Let $\mathfrak{c} := \bigcap_{i=1}^k \mathfrak{b}_i$. Show that for every j

$$\mathfrak{c} = \bigcap_{i \neq j} \mathfrak{b}_i.$$

To show this, let $x_j \in \mathfrak{b}_j \setminus (\bigcup_{i \neq j} \mathfrak{b}_i)$ and $y \in \bigcap_{i \neq j} \mathfrak{b}_i$; notice that $y + x_j \in \mathfrak{a}$ and $y + x_j \notin \bigcup_{i \neq j} \mathfrak{b}_i$. Deduce that $y + x_j \in \mathfrak{b}_j$, and so $y \in \mathfrak{b}_j$.

Next use the strong induction hypothesis, the inclusion

$$\mathfrak{a} \subseteq (\mathfrak{b}_1 + \mathfrak{b}_2) \cup \mathfrak{b}_3 \cup \cdots \cup \mathfrak{b}_k,$$

and similar inclusions for every pair $i \neq j$, and deduce that

$$\mathfrak{a}^m \subseteq \prod_{1 \le i < j \le k} (\mathfrak{b}_i + \mathfrak{b}_j) \quad (\mathbf{I}),$$

for some positive integer m. Notice that if the right hand side of (I) is expanded, every term is in a product of at least n-1 \mathfrak{b}_i 's, and so the right hand side is a subset of \mathfrak{c} .)

(**Remark**. This result is due to McCoy.)

- 3. Suppose A and B are two unital commutative rings, and $f : A \to B$ is a ring homomorphism. Consider B as an A-module where a.b := f(a)b. Suppose B is a flat A-module. Prove that the following statements are equivalent:
 - (a) For every $\mathfrak{a} \leq A$, $\mathfrak{a}^{ec} = \mathfrak{a}$.
 - (b) $f^* : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is surjective.
 - (c) For every $\mathfrak{m} \in Max(A), \mathfrak{m}^e \neq B$.
 - (d) If M is every non-zero A-module, then $M \otimes_A B \neq 0$.
 - (e) For every A-module $M, \theta: M \to M \otimes_A B, \theta(x) := x \otimes 1$ is injective.

(**Hint.** (1) \Rightarrow (2), in class we proved that \mathfrak{p} is in the image of f^* if and only if $\mathfrak{p}^{ec} = \mathfrak{p}$.

(2) \Rightarrow (3), if $f^*(\mathfrak{p}') = \mathfrak{m}$, then $\mathfrak{m}^e \subseteq \mathfrak{p}'$.

 $(3) \Rightarrow (4)$, For any $x \in M$, $0 \to Ax \to M$ is exact. Since B is flat,

$$0 \to Ax \otimes_A B \to M \otimes_A B$$

is exact. So to show $M \otimes_A B$ is not zero, it is enough to show $Ax \otimes_A B$ is not zero. Suppose $\mathfrak{a} := \{a \in A \mid ax = 0\}$; then $Ax \simeq A/\mathfrak{a}$ as an A-module. Hence $Ax \otimes_A B \simeq B/\mathfrak{a}^e$ as an A-module. Suppose \mathfrak{m} is a maximal ideal such that $\mathfrak{a} \subseteq \mathfrak{m}$, and deduce the claim. $(4) \Rightarrow (5)$, Suppose $M' := \ker \theta$. Since B is a flat A-module,

$$0 \to M' \otimes_A B \to M \otimes_A B \xrightarrow{g} (M \otimes_A B) \otimes_A B$$

is exact, where $g := \theta \otimes id_B$. View $M \otimes_A B$ as an *B*-module and let

$$h: (M \otimes_A B) \otimes_A B \to M \otimes_A B, h(x \otimes b) := xb.$$

Show that h is a well-defined B-module homomorphism. Notice that

$$g(m \otimes b) = \theta(m) \otimes b = (m \otimes 1) \otimes b;$$

and so $(h \circ g)(m \otimes b) = (m \otimes 1)b = m \otimes b$. This implies that $h \circ g = id$. Deduce that g is injective.

 $(5) \Rightarrow (1)$ Show that $\overline{f} : A/\mathfrak{a} \to B/\mathfrak{a}^e, \overline{f}(a+\mathfrak{a}) := f(a) + \mathfrak{a}^e$ is a well-defined injective ring homomorphism.)

Remark. We say the extension B/A is *faithfully flat* if the above statements hold.

4. Suppose f : A → B is a ring homomorphism and B is a flat A-module. Suppose q ∈ Spec(B) and p := q^c ∈ Spec(A). Let S_p := A\p and S_q := B\q. Let A_p := S⁻¹_p, B_p := S⁻¹_pB, and B_q := S⁻¹_qB. Recall that B_p is a flat A_p-module. Notice that B_p can be viewed as a subring of B_q, and it is a localization of B_p, and so B_q is a flat B_p-module. Hence, we can view B_q as a flat A_p-module. Let g : A_p → B_q be the corresponding ring homomorphism. Prove that

$$g^* : \operatorname{Spec}(B_{\mathfrak{q}}) \to \operatorname{Spec}(A_{\mathfrak{p}})$$

is surjective.

(**Hint.** Use part (c) of the previous problem, and show that $g: A_{\mathfrak{p}} \to B_{\mathfrak{q}}$ is faithfully flat.)

5. Suppose A is a unital commutative ring and G is a finite subgroup of the group automorphisms of A. Let

$$A^G := \{ a \in A \mid \forall g \in G, g(a) = a \}.$$

(a) Prove that A/A^G is an integral extension.

(b) Suppose $\mathfrak{p} \in \operatorname{Spec}(A^G)$. Prove that G acts transitively on

$$\{\mathfrak{q}\in\operatorname{Spec}(A)\mid\mathfrak{q}^c=\mathfrak{p}\};$$

in particular, this is a finite set. (This means $\operatorname{Spec}(A) \to \operatorname{Spec}(A^G)$ has finite fibers.)

(**Hint.** Notice that $a \in A$ is a zero of

$$f_{a;G}(x) := \prod_{g \in G} (x - g(a)).$$

Argue why $f_{a;G}(x) \in A^G[x]$.

Suppose $\mathfrak{q}_1^c = \mathfrak{q}_2^c = \mathfrak{p}$. For every $a \in \mathfrak{q}_1$, we have

$$N_G(a) := \prod_{g \in G} g(a) \in A^G \cap \mathfrak{q}_1.$$

Hence, for all $a \in \mathfrak{q}_1$, $N_G(a) \in \mathfrak{q}_2$. Obtain that for all $a \in \mathfrak{a}_1$, $g(a) \in \mathfrak{q}_2$ for some $g \in G$. Hence,

$$\mathfrak{q}_1 \subseteq \bigcup_{g \in G} g(\mathfrak{q}_2).$$

Deduce that $\mathbf{q}_1 = g(\mathbf{q}_2)$ for some $g \in G$.)

- 6. Suppose A is an integrally closed integral domain, F is a field of fractions of A, and E is a finite Galois extension of F. Let G := Gal(E/F). Let B be the integral closure of A in E.
 - (a) Prove that for every $\sigma \in G$, $\sigma(B) = B$.
 - (b) Prove that $A = B^G$.
- 7. Suppose F is a field. Let $\sigma_j(x_1, \ldots, x_n) \in A := F[x_1, \ldots, x_n]$ be such that

$$(T - x_1) \cdots (T - x_n) = \sum_{j=0}^n (-1)^j \sigma_j(x_1, \dots, x_n) T^{n-j} \in A[T].$$

Notice that the symmetric group S_n is a subgroup of the group of automorphisms of A. Let $L := F(x_1, \ldots, x_n)$ and $K := F(\sigma_1, \ldots, \sigma_n)$. Recall that $K = \operatorname{Fix}(S_n)$, and so L/K is a Galois extension and $\operatorname{Gal}(L/K) \simeq S_n$.

- (a) Prove that $A^{S_n} = F[\sigma_1, \ldots, \sigma_n]$. (You are allowed to use without proof that $F[\sigma_1, \ldots, \sigma_n]$ is isomorphic to the ring of polynomials in n variables.)
- (b) Prove that $\operatorname{Spec}(F[x_1,\ldots,x_n]) \to \operatorname{Spec}(F[\sigma_1,\ldots,\sigma_n])$ has finite fibers.
- 8. For $\mathfrak{a} \leq A$, let $\mathfrak{a}[x] := \{\sum_{i=0}^{m} a_i x^i | a_i \in \mathfrak{a}, m \in \mathbb{Z}^+\}$. Let $f : A \hookrightarrow A[x], f(a) := a$.
 - (a) Convince yourself that $\mathfrak{a}^e = \mathfrak{a}[x]$. Show that $\operatorname{Spec} A \xrightarrow{e} \operatorname{Spec}(A[x])$ is a well-defined injection.
 - (b) Prove that, if \mathfrak{q} is a \mathfrak{p} -primary of A, then \mathfrak{q}^e is a \mathfrak{p}^e -primary ideal of A[x].
 - (c) Suppose k is a field. Prove that $0 \subseteq \langle x_1 \rangle \subseteq \cdots \subseteq \langle x_1, \ldots, x_n \rangle$ is a chain of prime ideals of $k[x_1, \ldots, x_n]$ and $\langle x_1, \ldots, x_r \rangle^m$ is $\langle x_1, \ldots, x_r \rangle$ -primary for any $1 \leq r \leq n$ and positive integer m.