
1 Homework 6.

1. Suppose f : A → B is a ring homomorphism. For p ∈ Spec(A), let Sp :=

A \ p, Ap := S−1
p A, k(p) := Ap/S

−1
p p, and Bp := f(Sp)

−1B. Prove that

B ⊗A k(p) ≃ Bp

f(Sp)−1pe
.

(Hint. Show that b⊗ (a
s
+S−1

p p) 7→ f(a)b
f(s)

+ f(Sp)
−1pe is a well-defined ring

homomorphism. Next, consider the function from Bp to B ⊗A k(p) given

by b
f(s)

7→ b⊗ 1
s
; notice that if s1, s2 ∈ S and f(s1) = f(s2), then

b⊗ 1

s1
− b⊗ 1

s2
= b⊗ s2 − s1

s1s2
= bf(s2 − s1)⊗

1

s1s2
= 0,

and so the given function is well-defined. Check that it is a ring homomor-

phism, and f(Sp)
−1pe is in its kernel. Therefore,

b

f(s)
+ f(Sp)

−1pe 7→ b⊗ 1

s

is a well-defined ring homomorphism. Show that these given ring homo-

morphisms are inverse of each other. )

(Remark. In class, we showed that there exists a natural bijection between

the fiber (f ∗)−1(p) and Spec( Bp

f(Sp)−1pe
). Based on this exercise, you see that

there exists a natural bijection between (f ∗)−1(p) and Spec(B ⊗A k(p)).

This can be better seen as the fiber product of Spec(B) and Spec(k(p))

over Spec(A)!)

2. Suppose a, b1, b2, . . . , bk ⊴ A,

a ⊆
k⋃

i=1

bi, and a ̸⊆
⋃

1≤i≤k,i̸=j

bi

for every 1 ≤ j ≤ k. Then there exists a positive integer n such that

an ⊆
⋂k

i=1 bi.

(Hint. Use strong induction on k; show that a ⊆ b1 ∪ b2 implies a ⊆ bi for

some i. Show the claim for k = 3 as well. Argue why bi ∩ a’s also satisfy

the above conditions; and so W.L.O.G. we can assume that a =
⋃k

i=1 bi.

Let c :=
⋂k

i=1 bi. Show that for every j

c =
⋂
i ̸=j

bi.
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To show this, let xj ∈ bj \ (
⋃

i ̸=j bi) and y ∈
⋂

i ̸=j bi; notice that y + xj ∈ a

and y + xj ̸∈
⋃

i ̸=j bi. Deduce that y + xj ∈ bj, and so y ∈ bj.

Next use the strong induction hypothesis, the inclusion

a ⊆ (b1 + b2) ∪ b3 ∪ · · · ∪ bk,

and similar inclusions for every pair i ̸= j, and deduce that

am ⊆
∏

1≤i<j≤k

(bi + bj) (I),

for some positive integer m. Notice that if the right hand side of (I) is

expanded, every term is in a product of at least n− 1 bi’s, and so the right

hand side is a subset of c.)

(Remark. This result is due to McCoy.)

3. Suppose A and B are two unital commutative rings, and f : A → B is a ring

homomorphism. Consider B as an A-module where a.b := f(a)b. Suppose

B is a flat A-module. Prove that the following statements are equivalent:

(a) For every a⊴ A, aec = a.

(b) f ∗ : Spec(B) → Spec(A) is surjective.

(c) For every m ∈ Max(A), me ̸= B.

(d) If M is every non-zero A-module, then M ⊗A B ̸= 0.

(e) For every A-module M , θ : M → M ⊗A B, θ(x) := x⊗ 1 is injective.

(Hint. (1)⇒(2), in class we proved that p is in the image of f ∗ if and only

if pec = p.

(2)⇒(3), if f ∗(p′) = m, then me ⊆ p′.

(3)⇒(4), For any x ∈ M , 0 → Ax → M is exact. Since B is flat,

0 → Ax⊗A B → M ⊗A B

is exact. So to show M ⊗A B is not zero, it is enough to show Ax⊗A B is

not zero. Suppose a := {a ∈ A| ax = 0}; then Ax ≃ A/a as an A-module.

Hence Ax ⊗A B ≃ B/ae as an A-module. Suppose m is a maximal ideal

such that a ⊆ m, and deduce the claim.
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(4)⇒(5), Suppose M ′ := ker θ. Since B is a flat A-module,

0 → M ′ ⊗A B → M ⊗A B
g−→ (M ⊗A B)⊗A B

is exact, where g := θ ⊗ idB. View M ⊗A B as an B-module and let

h : (M ⊗A B)⊗A B → M ⊗A B, h(x⊗ b) := xb.

Show that h is a well-defined B-module homomorphism. Notice that

g(m⊗ b) = θ(m)⊗ b = (m⊗ 1)⊗ b;

and so (h ◦ g)(m ⊗ b) = (m ⊗ 1)b = m ⊗ b. This implies that h ◦ g = id.

Deduce that g is injective.

(5)⇒(1) Show that f : A/a → B/ae, f(a+ a) := f(a) + ae is a well-defined

injective ring homomorphism.)

Remark. We say the extension B/A is faithfully flat if the above state-

ments hold.

4. Suppose f : A → B is a ring homomorphism and B is a flat A-module.

Suppose q ∈ Spec(B) and p := qc ∈ Spec(A). Let Sp := A\p and Sq := B\q.
Let Ap := S−1

p , Bp := S−1
p B, and Bq := S−1

q B. Recall that Bp is a flat

Ap-module. Notice that Bp can be viewed as a subring of Bq, and it is a

localization of Bp, and so Bq is a flat Bp-module. Hence, we can view Bq as a

flat Ap-module. Let g : Ap → Bq be the corresponding ring homomorphism.

Prove that

g∗ : Spec(Bq) → Spec(Ap)

is surjective.

(Hint. Use part (c) of the previous problem, and show that g : Ap → Bq

is faithfully flat.)

5. Suppose A is a unital commutative ring and G is a finite subgroup of the

group automorphisms of A. Let

AG := {a ∈ A | ∀g ∈ G, g(a) = a}.

(a) Prove that A/AG is an integral extension.
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(b) Suppose p ∈ Spec(AG). Prove that G acts transitively on

{q ∈ Spec(A) | qc = p};

in particular, this is a finite set. (This means Spec(A) → Spec(AG)

has finite fibers.)

(Hint. Notice that a ∈ A is a zero of

fa;G(x) :=
∏
g∈G

(x− g(a)).

Argue why fa;G(x) ∈ AG[x].

Suppose qc1 = qc2 = p. For every a ∈ q1, we have

NG(a) :=
∏
g∈G

g(a) ∈ AG ∩ q1.

Hence, for all a ∈ q1, NG(a) ∈ q2. Obtain that for all a ∈ a1, g(a) ∈ q2 for

some g ∈ G. Hence,

q1 ⊆
⋃
g∈G

g(q2).

Deduce that q1 = g(q2) for some g ∈ G. )

6. Suppose A is an integrally closed integral domain, F is a field of fractions

of A, and E is a finite Galois extension of F . Let G := Gal(E/F ). Let B

be the integral closure of A in E.

(a) Prove that for every σ ∈ G, σ(B) = B.

(b) Prove that A = BG.

7. Suppose F is a field. Let σj(x1, . . . , xn) ∈ A := F [x1, . . . , xn] be such that

(T − x1) · · · (T − xn) =
n∑

j=0

(−1)jσj(x1, . . . , xn)T
n−j ∈ A[T ].

Notice that the symmetric group Sn is a subgroup of the group of automor-

phisms of A. Let L := F (x1, . . . , xn) and K := F (σ1, . . . , σn). Recall that

K = Fix(Sn), and so L/K is a Galois extension and Gal(L/K) ≃ Sn.
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(a) Prove that ASn = F [σ1, . . . , σn]. (You are allowed to use without

proof that F [σ1, . . . , σn] is isomorphic to the ring of polynomials in n

variables.)

(b) Prove that Spec(F [x1, . . . , xn]) → Spec(F [σ1, . . . , σn]) has finite fibers.

8. For a ⊴ A, let a[x] := {
∑m

i=0 aix
i| ai ∈ a,m ∈ Z+}. Let f : A ↪→

A[x], f(a) := a.

(a) Convince yourself that ae = a[x]. Show that SpecA
e
↪→ Spec(A[x]) is

a well-defined injection.

(b) Prove that, if q is a p-primary of A, then qe is a pe-primary ideal of

A[x].

(c) Suppose k is a field. Prove that 0 ⊆ ⟨x1⟩ ⊆ · · · ⊆ ⟨x1, . . . , xn⟩ is a

chain of prime ideals of k[x1, . . . , xn] and ⟨x1, . . . , xr⟩m is ⟨x1, . . . , xr⟩-
primary for any 1 ≤ r ≤ n and positive integer m.
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