To understand single-variable functions better, higher-ordered derivatives are used (as you have seen before). The same is true for multi-variable functions. It is particularly important in dealing with optimization problems.

What are higher-order derivatives?

Let $f(x,y) = x^2 + x^2 y + y^3$. Then

$$f_x(x,y) = 2x + 2xy \quad \text{and} \quad f_y(x,y) = x^2 + 3y^2.$$

Now we can talk about partial derivatives of f_x and f_y in terms of x and y:

- Partial derivative of f_x with respect to $x = f_{xx}(x,y) = 2 + 2y$
- Partial derivative of f_x with respect to $y = f_{xy}(x,y) = 2x$
- Partial derivative of f_y with respect to $x = f_{yx}(x,y) = 2 - x$
- Partial derivative of f_y with respect to $y = f_{yy}(x,y) = 6y$

The 2nd partial derivatives, (also called iterated partial derivatives) are written:

$$f_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}, \quad f_{xy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x},$$

$$f_{yx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}, \quad f_{yy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2}.$$
Lecture 20: Higher order partial derivatives

Monday, November 7, 2016 8:27 AM

Ex. Find 2nd-order partial derivatives of \(f(x,y) = \log(x^2+y) \).

Solution. \(f_x = \frac{2x}{x^2+y} \), \(f_y = \frac{1}{x^2+y} \).

So

\[
 f_{xx} = \frac{2(x^2+y) - (2x)(2x)}{(x^2+y)^2} = \frac{2y - 2x^2}{(x^2+y)^2}.
\]

\[
 f_{xy} = \frac{-2x}{(x^2+y)^2}, \quad f_{yx} = \frac{-2x}{(x^2+y)^2}, \quad f_{yy} = \frac{-1}{(x^2+y)^2}.
\]

In the above example, you see \(f_{xy} = f_{yx} \). This is true in a fairly general setting: if all the 2nd-order derivatives are continuous.

So for nice function it is better to choose a good order.

Ex. Let \(g(x,y) = e^{(2x+3y)} + xy \). Find \(g_{xy} \).

Solution. As you can see, a part of \(g \) is a complicated function of \(x \). So it takes time to compute \(g_x \), and then \(g_{xy} \). But since it is a nice function, \(g_{xy} = g_{yx} \). And \(g_y = x \). So \(g_{xy} = g_{yx} = 1 \).

We can talk about iterated partial derivatives of more than
Lecture 20: Higher order partial derivatives

Monday, November 7, 2016 8:45 AM

2 variable functions and the same technique can be used:

Ex. Let \(g(x, y, z) = \ln(\cos(x^2 + y^2)) + xy^2z^3 \). Find \(g_{xyz} \).

Solution. Since \(g \) is a nice function, we can choose any order we like to find \(g_{xyz} \).

\(g \) is easiest as a function of \(z \). So let’s compute \(g_z \) first:

\[
 g_z = 3xy^2z^2.
\]

Now it is easy enough to work with any order of \(x \) and \(y \):

\[
 g_{zx} = 3y^2z^2 \quad \text{and} \quad g_{zxy} = 6yz^2.
\]

Hence \(g_{xyz} = g_{zxy} = 6yz^2 \).

Optimization problems: finding maximum and minimum of a multi-variable function.

As we have seen before, if directional derivative of \(f \) in the direction of \(\mathbf{u} \) is positive, then \(f \) increases in the direction of \(\mathbf{u} \). And we have seen the directional derivative of \(f \) in the direction of \(\nabla f(p_0) \) is \(\|\nabla f(p_0)\| \). So if \(f \) has a local maximum at \(p_0 \), then

\[
 \nabla f(p_0) = \mathbf{0}.
\]
Similarly we have $D_\alpha f(p_0) < 0$ implies f decreases in the direction of α. And directional derivative in the direction of $\nabla f(p_0)$ is $-||\nabla f(p_0)||$. So we get

If f is differentiable at p_0 and f has a local maximum or a local minimum at p_0, then $\nabla f(p_0) = 0$.

For instance consider the following combination of “mountains” and “lake”.

Because of the above important box we define a critical point of f as follows:

Definition. We say p_0 is a critical point of f if either f is not differentiable at p_0, or $\nabla f(p_0) = 0$.

So we have

If f has a local max or a local min at p_0, then p_0 is a critical point of f.
Not all the critical points are going to give us local extreme values.

If f does NOT have a local max or a local min at a critical point p_0, then p_0 is called a saddle point.