Name: \qquad
Section: \qquad
TA: \qquad
Math 20C
Exam 1 A

October 21, 2011

Turn off and put away your cell phone.
You may use a calculator and one sheet of notes on the exam.
Read each question carefully, and answer each question completely.
Show all of your work; no credit will be given for unsupported answers.
Write your solutions clearly and legibly; no credit will be given for illegible solutions. If any question is not clear, ask for clarification.

$\#$	Points	Score
$\mathbf{1}$	9	
$\mathbf{2}$	9	
$\mathbf{3}$	12	
$\mathbf{4}$	10	
$\boldsymbol{\Sigma}$	40	

1. (9) Suppose

$$
\mathbf{u}=\langle 4,1,-2\rangle, \quad \mathbf{v}=\langle-3,6,1\rangle, \quad \mathbf{w}=\langle-2,-1,3\rangle
$$

Compute
(a)

$$
\begin{aligned}
u \cdot \mathrm{w} & =(4)(-2)+(1)(-1)+(-2)(3) \\
& =-8-1-6 \\
& =-15
\end{aligned}
$$

(b) $w \times v=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ -2 & -1 & 3 \\ -3 & 6 & 1\end{array}\right|=\langle | \begin{array}{cc}-1 & 3 \\ 6 & 1\end{array}\left|,-\left|\begin{array}{cc}-2 & 3 \\ -3 & 1\end{array}\right| \cdot\right| \begin{array}{cc}-2 & -1 \\ -3 & 6\end{array}| \rangle$

$$
\begin{aligned}
& =\langle(-1)(1)-(3)(6),-[(-2)(1)-(3)(-3)],(-2)(6)-(-1)(-3)\rangle \\
& =\langle-1-18,-[-2+9],-12-3\rangle=\langle-19,-7,-15\rangle \\
& =\sqrt{(-2)^{2}+(-1)^{2}+(3)^{2}} \\
& =\sqrt{4+1+9} \\
& =\sqrt{14} .
\end{aligned}
$$

2. (9)

Consider the path

$$
\mathbf{r}(t)=\left\langle\frac{1}{1+t}, \cos \pi t, 3 t^{2}\right\rangle
$$

Find a parametrization of the line that is tangent to $\mathbf{r}(t)$ when $t=1$.
A parametrization of the line that is tangent to $r(t)$ when $t=t_{0}$ is $L(t)=r\left(t_{0}\right)+t r^{\prime}\left(t_{0}\right)$. So

$$
r^{\prime}(t)=\left\langle\frac{-1}{(1+t)^{2}},-\pi \sin \pi t, 6 t\right\rangle
$$

Therefore

$$
\begin{aligned}
r^{\prime}(1) & =\left\langle\frac{-1}{4}, 0,6\right\rangle \text { and } \\
r(1) & =\left\langle\frac{1}{2},-1,3\right\rangle, \text { which implies } \\
L(t) & =\left\langle\frac{1}{2},-1,3\right\rangle+t\left\langle\frac{-1}{4}, 0,6\right\rangle \\
& =\left\langle\frac{1}{2}-\frac{t}{4},-1,3+6 t\right\rangle
\end{aligned}
$$

is a parametrization of the tangent line of $r(t)$ at $r(1)$.
3. (12) Suppose a bird is traveling in a submarine along the path $\mathbf{r}(t)=\langle 3 t-1, \cos 2 t, \sin 2 t\rangle$.

(a) Compute the length of its path from $t=0$ to $t=5$.

$$
\begin{aligned}
\int_{0}^{5}\left\|r^{\prime}(t)\right\| d t & =\int_{0}^{5}\|\langle 3,-2 \sin 2 t, 2 \cos 2 t\rangle\| d t \\
& =\int_{0}^{5} \sqrt{9+4 \sin ^{2} 2 t+4 \cos ^{2} 2 t} d t
\end{aligned} \begin{aligned}
&=\int_{0}^{5} \sqrt{13} d t \\
&=5 \sqrt{13} . \\
& \text { (b) Compute the velocity at time } t .
\end{aligned} \quad \begin{aligned}
v(t)=r^{\prime}(t) & =\langle 3,-2 \sin 2 t, 2 \cos 2 t\rangle
\end{aligned}
$$

(c) Compute the acceleration at time t.

$$
a(t)=v^{\prime}(t)=\langle 0,-4 \cos 2 t, 4 \sin 2 t\rangle
$$

(d) At time $t=\pi / 2$, is the submarine speeding up, slowing down or traveling at a constant speed? Explain your answer.
Solution(1) Speed of the submarine at time $t=\|v(t)\|=$ $\sqrt{9+4 \sin ^{2} 2 t+4 \cos ^{2} 2 t}=\sqrt{13}$. So it has a constant speed. Therefore it always (in parti. at time $t=\pi_{2}$) travels at a constant speed. Sclution(2) To see if a moving particle is speeding up or not, we should look at $\vec{a} \cdot \vec{v}$:
$\vec{a} \cdot \vec{v}>0 \Rightarrow$ speeding up $\{$ In our case,
$\vec{a} \cdot \vec{v}<0 \Rightarrow$ slowing down $\} \quad \vec{a} \cdot \vec{v}=0$.
$\vec{a} \cdot \overrightarrow{\mathbf{v}}=0 \Rightarrow$ constant Speed
(a) Determine the equation of the plane that passes through the points

$$
\underset{(2,-1,4),}{\mathbf{P}} \underset{(1,-1,3),}{\mathbf{Q}} \underset{(1,3,-2)}{\mathbf{R}}
$$

$\vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R}$ is a normal vector

$$
\begin{aligned}
& \overrightarrow{P Q}=\langle 1-2,-1+1,3-4\rangle=\langle-1,0,-1\rangle \\
& \overrightarrow{P R}=\langle 1-2,3+1,-2-4\rangle=\langle-1,4,-6\rangle
\end{aligned}
$$

$\vec{n}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ -1 & 0 & -1 \\ -1 & 4 & -6\end{array}\right|=\langle 4,-5,-4\rangle \begin{gathered}\text { Since the considered } \\ \text { plane passes }\end{gathered}$ plane passes through P :

$$
4 x-5 y-4 z=(4)(2)-(5)(-1)-(4)(4)=8+5-16=-3
$$

(b) Find the point of intersection of the plane

$$
2 x-3 y+z=5
$$

and the line

$$
\mathbf{r}(t)=\langle 3 t+2,1,-7 t\rangle
$$

The given line is

$$
x=3 t+2, y=1 \quad \text { and } z=-7 t
$$

So intersection happens when
$2(3 t+2)-3(1)+(-7 t)=5$, which implies

$$
\begin{aligned}
& 6 t+4-3-7 t=5 \\
\Rightarrow & -t+1=5 \Rightarrow t=-4
\end{aligned}
$$

\Rightarrow the point of intersection is

$$
\langle(3)(-4)+2,1,(-7)(-4)\rangle=\langle-10,1,28\rangle
$$

