Name:

PID:

Section:

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
1. Let $A = (1, 0, 3)$ and $B = (-3, 2, 1)$.
 (a) (3 points) Normalize \overrightarrow{AB}.
 (b) (3 points) Find the midpoint M of the segment AB.
 (c) (4 points) Find equation of the plane passing through M and perpendicular to \overrightarrow{AB}.

2. (5 points) Evaluate the limit or determine that it does not exist.
 \[
 \lim_{(x,y) \to (0,0)} \frac{xy}{x^2 + y^2}.
 \]

3. Answer the following questions with short justifications:
 (a) (3 points) Find the length of $\frac{-3}{\|v\|} \mathbf{v}$.
 (b) (4 points) Suppose $\mathbf{v} \times \mathbf{w} = (1, -2, 1)$ and $\mathbf{u} = (1, 1, -1)$. Find the volume of the parallelepiped spanned by \mathbf{v}, \mathbf{w} and \mathbf{u}.
 (c) (4 points) Suppose $\|\mathbf{v} \times \mathbf{w}\| = 3$. Find the area of the parallelogram spanned by $2\mathbf{v} + 3\mathbf{w}$ and $\mathbf{v} + \mathbf{w}$.
 (d) (4 points) Suppose $\|\mathbf{v}\| = 2$, $\|\text{proj}_\mathbf{v} \mathbf{w}\| = 5$, and the angle between \mathbf{v} and \mathbf{w} is obtuse. Find $\mathbf{v} \cdot \mathbf{w}$.
 (e) (3 points) Find a normal vector of a plane which is parallel to the line $L(t) = t(1, 2, 3) + (1, 0, 1)$ and perpendicular to the plane $x - y + z = 1$.
 (f) (3 points) Find a vector parallel to the line of intersection of the planes $x + y + z = 1$ and $-x + y - z = 0$.
4. (4 points) Match the following functions with the contour diagrams (a)-(d).

1. \(f_1(x, y) = x^3 - y \)
2. \(f_2(x, y) = xy \)
3. \(f_3(x, y) = x^2 - y^2 \)
4. \(f_4(x, y) = y - \ln x \)

Good Luck!
1(a) \[\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (-3, 2, 1) - (1, 0, 3) = (-4, 2, -2) \]

\[\|\overrightarrow{AB}\| = \sqrt{(-4)^2 + 2^2 + (-2)^2} = \sqrt{16 + 4 + 4} = \sqrt{24}. \]

Normalizing \[\overrightarrow{AB} : \frac{\overrightarrow{AB}}{\|\overrightarrow{AB}\|} = \left(\frac{-4}{\sqrt{24}}, \frac{2}{\sqrt{24}}, \frac{-2}{\sqrt{24}} \right) \]

\[= \left(-\frac{\sqrt{24}}{6}, \frac{\sqrt{24}}{12}, -\frac{\sqrt{24}}{12} \right). \]

1(b) \[\overrightarrow{OM} = \frac{1}{2} \overrightarrow{OA} + \frac{1}{2} \overrightarrow{OB} = \left(\frac{-3+1}{2}, \frac{2+0}{2}, \frac{1+3}{2} \right) \]

\[= (-1, 1, 2). \] So \(M = (-1, 1, 2). \)

1(c) \[-4x + 2y - 2z = (4)(-1) + 2(1) - 2(2) \]

\[= 4 - 2 - 4 = 2. \]

So \[-2x + y - z = 1. \]

2. Let's approach to \((0,0)\) along the line \(y = kx \).

\[\lim_{x \to 0} \frac{x(kx)}{x^2 + (kx)^2} = \lim_{x \to 0} \frac{kx^2}{(1+k^2)x^2} = \frac{k}{1+k^2} \]

Since this limit depends on \(k \), \(\lim_{(x,y) \to (0,0)} \frac{xy}{x^2 + y^2} \) does NOT exist.

3(a) \[\frac{\vec{V}}{\|\vec{V}\|} \] is a unit vector. So length of \(-3 \frac{\vec{V}}{\|\vec{V}\|} \) is \(|-3| = 3 \).
3(b) Volume of the parallelepiped spanned by \(\vec{v}, \vec{w}, \) and \(\vec{u} \)

\[
= |(\vec{v} \times \vec{w}) \cdot \vec{u}| = |(1, -2, 1) \cdot (1, 1, -1)|
\]

\[
= |1 - 2 - 1| = 2.
\]

3(c) Area of the parallelogram spanned by \(2 \vec{v} + 3 \vec{w} \) and \(\vec{v} + \vec{w} \)

\[
\vec{v} + \vec{w} = \| (2 \vec{v} + 3 \vec{w}) \times (\vec{v} + \vec{w}) \|
\]

\[
= \| 2 \vec{v} \times \vec{v} + 2 \vec{v} \times \vec{w} + 3 \vec{w} \times \vec{v} + 3 \vec{w} \times \vec{w} \|
\]

\[
= \| 2 \vec{v} \times \vec{w} - 3 \vec{v} \times \vec{w} \| = \| -\vec{v} \times \vec{w} \| = 3.
\]

Lecture 6, page 4.

3(d) \(|\vec{v} \cdot \vec{w}| = \| \text{Proj}_\vec{v} \vec{w} \| \| \vec{v} \| = (5)(2) = 10 \)

Since the angle between \(\vec{v} \) and \(\vec{w} \) is obtuse, \(\vec{v} \cdot \vec{w} < 0 \).

So \(\vec{v} \cdot \vec{w} = -10 \).

Lecture 5, page 1, 2.

3(e) Both normal vector of \(x - y + z = 1 \) and a vector parallel to the line \(\vec{l}(t) = t(1, 2, 3) + (1, 0, 1) \) are parallel to the plane that we are looking for. So \(\vec{v} = (1, -1, 1) \) and \(\vec{w} = (1, 2, 3) \) are parallel to this.
plane. Hence
\[\vec{V} \times \vec{W} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = (-3-2, 1-3, 2+1) \]
\[= (-5, -2, 3) \]
is a normal vector of this plane.

Section 1.3, Problem 35
(This was a bit tricky, and I treated this as a bonus problem.)

3(f) The line of intersection would be perpendicular to normal vectors of the planes \(x+y+z=1 \) and \(-x+y-z=0 \)

So it is parallel to their cross product:
\[(1,1,1) \times (-1,1,-1) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ -1 & 1 & -1 \end{vmatrix} = (-2-1, -1+1, 1+1) \]
\[= (-3, 0, 2) \]

Most parts of problem 3 are similar to problem 4 in the fifth practice exam.

4. 1 \(x^2-y=0, 1, -1 \Rightarrow y = x^3 \text{ or } x^3 + 1 \Rightarrow b \)

2 \(xy = 1 \text{ is a level curve} \Rightarrow a \)

3 \(x^2-y^2=0, 1, 2 \Rightarrow \text{hyperbolas and crossed lines} \Rightarrow a \)

4 \(y - \ln x = 0 \Rightarrow y = \ln x \Rightarrow c \)

Lecture 9, page 4.