Name: __

PID: __

Section: __

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
1. A particle’s position function is \(\mathbf{r}(t) = (\ln t, t^2, 2t + 1) \).
 (a) (3 points) Find the particle’s velocity \(\mathbf{v}(t) \) and its acceleration \(\mathbf{a}(t) \).
 (b) (2 points) Find the particle’s speed \(||\mathbf{v}(t)|| \) as a function of \(t \). (Simplify your answer)
 (c) (3 points) Find the total distance traveled by the particle during the time interval \(1 \leq t \leq 2 \).

2. Evaluate the limit or determine that it does not exist.
 (a) (5 points) \(\lim_{(x,y) \to (1,0)}(x^2 - 1) \cos \left(\frac{1}{(x-1)^2+y^2} \right) \).
 (b) (5 points) \(\lim_{(x,y) \to (0,0)} \frac{xy^2}{x+y} \).

3. Let \(f(x,y) = \cos(x^2+y) \) and \(P_0 = (1, \pi/2 - 1, 0) \).
 (a) (3 points) Find \(\nabla f(x,y) \).
 (b) (5 points) Find the equation of the tangent plane of \(z = f(x,y) \) at \(P_0 \).
 (c) (2 points) Find the maximum rate of increase of \(f \) at \((1, \pi/2 - 1) \).

4. Answer the following questions with short justifications:
 (a) (2 points) Suppose \(\nabla f(1,2) = (-1,3) \) for some function \(f \). Is \(f \) increasing or decreasing in the direction of \(\mathbf{v} = (2,1) \).
 (b) (2 points) Find a normal vector of the tangent plane of the hyperboloid \(\frac{x^2}{4} + y^2 - \frac{z^2}{2} = 1 \) at \((2,1,3) \).
 (c) (3 points) Find \(\frac{\partial z}{\partial y} \) where \(z = f(x,y) \) satisfies \(e^{xy} + \sin(xz) + y = 0 \).
 (Your answer can be in terms of \(x, y, \) and \(z \).)
 (d) (3 points) Let \(x = s + t \) and \(y = s - t \). Show that for any differentiable function \(f(x,y) \) we have \(f_x^2 - f_y^2 = f_x f_t \).
 (e) (2 points) We are told that the velocity of a particle is \((-1,-2) \) and its acceleration is \((-3,1) \). Is the particle slowing down or speeding up?

Good Luck!