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Chapter 1

What is super-approximation? 1st try.

1.1 Rough description of strong approximation

To understand the origin of the phrase super-approximation, we start with briefly
formulating strong approximation. Let’s start with the case of SL2, the set of two-by-
two matrices with entries in a given unital commutative ring and determinant 1. Strong
approximation addresses questions of the following form.

Question 1. Does the residue module n map πn : Z → Z/nZ induces a surjective
map from SL2(Z) to SL2(Z/nZ)?

In Exercise 3, you can find one approach for giving an affirmative answer to this
question. Notice that for every unital commutative ring R, SL2(R) can be identified
with V (R) := {(a, b, c, d) ∈ R4| ad− bc = 1}. Question 1 is equivalent to asking if
every solution of ad− bc = 1 in Z/nZ has a lift to a solution of this equation in Z.

One can think about Question 1 in terms of transitivity of certain subgroups of the
group of automorphism of V as well. As you can see in Exercise 2, SL2(Z) is generated

by
(

1 1
0 1

)
and

(
0 1
−1 0

)
. This means

(a, b, c, d) 7→ (a± b, b, c± d, d) and (a, b, c, d) 7→ ±(b,−a, d,−c)

induce a transitive action on V (Z). The strong approximation is equivalent to saying
that these maps induce a transitive action on V (Z/nZ) for every positive integer n.

Using the reduced row echelon process, one can show a similar result for SLm(Z)
for m ≥ 3. This method is essentially based on using unipotent elements (u is called
unipotent if all of its eigenvalues are 1). Following the same ideas, one can prove a
similar result for symplectic groups. Let’s recall that for every unital commutative ring
R,

Sp2n(R) =

{
γ ∈ SL2n(R)

∣∣∣∣ γ ( 0 I
−I 0

)
γt =

(
0 I
−I 0

)}
.

This means πm : Sp2n(Z)→ Sp2n(Z/mZ) is surjective.

5
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Next, we discuss that a similar statement does not hold for PGL2. Let’s define
PGL2(R) := GL2(R)/R×I where R× is the group of units of R. Then

det : PGL2(R)→ R×/(R×)2, det(γR×I) := det(γ)(R×)2

is a well-defined surjective group homomorphism. Hence for every two distinct primes
p and q, πpq : PGL2(Z)→ PGL2(Z/pqZ) is not surjective as

|Z×| = 2 and |(Z/pqZ)×/((Z/pqZ)×)2| = 4.

In technical terms, the big difference between SL2 and PGL2 is that SL2 is simply-
connected and PGL2 is not. Notice that for every algebraically closed field F ,

1→ µ2(F )→ SL2(F )→ PGL2(F )→ 1

is a short exact sequence where µ2(R) := {x ∈ R| x2 = 1}. Moreover µ2(F ) is
a finite central subgroup. A group homomorphism with these properties is called a
central isogeny (at least in characteristic zero). A(n) (algebraic) group which does not
have a non-trivial (algebraic) isogeny is called a simply-connected (algebraic) group.
For instance, SLn and Sp2n are simply connected algebraic groups, but PGLn is not
a simply connected algebraic group. Here we take a rudimentary approach and say
that an algebraic group is a group which consists of solutions of certain polynomial
equations and the group operations can be given by polynomial maps. Now we can
formulate a version of strong approximation (due to Eichler, Kneser, and Platonov):

Theorem 2 (Strong approximation: the S-arithmetic case). Suppose G is a simply-
connected algebraic group defined by polynomials with coefficients in Z. Suppose
G(C) is a product of almost simple groups (we say G is semisimple). Assume that
G(Z[1/q0]) is an infinite group. Then for every integer n with large enough prime
factors the residue modulo n congruence map

πn : G(Z[1/q0])→ G(Z/nZ)

is surjective.

Next we want to see what happens if we restrict πn to a subgroup Γ of G(Z[1/q0]).
Can we still get the entire G(Z/nZ) (at least for integers n with large prime factors)?

We make one important observation: if there is an integer polynomial map f :
Q(C) → C such that f(G(Z[1/q0])) 6= 0 but f(Γ) = 0, then it is not possible for
πp(Γ) = G(Z/pZ) to hold for an arbitrarily large prime p. This is the case, because
f(G(Z[1/q0])) 6= 0 implies that for a large enough prime p, there is λ ∈ G(Z[1/q0])
such that πp(f(λ)) 6= 0, and so f(πp(λ)) 6= 0. On the other hand, f(πp(Γ)) =
0. Therefore πp(λ) 6∈ πp(Γ). We refer to this type of limitations as an algebraic
obstruction.

If we refer to common solutions of a family of polynomials as closed sets, then
to avoid the above algebraic obstruction we have to assume that the smallest closed
subset of G which contains Γ is G. We refer to the topology given by these closed
sets as the Zariski topology of G. In this language, the latest condition can be phrased
as Γ is Zariski-dense in G. Now we can formulate a stronger version of the strong
approximation (due to Weisfeiler).
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Theorem 3 (Strong approximation: the Zariski-dense case). Suppose G is a Zariski-
connected simply-connected semisimple group given by integer polynomials. Suppose
Γ ⊆ G(Z[1/q0]) is a Zariski-dense subgroup. Then for every integer n with large
enough prime factors the residue modulo n congruence map

πn : Γ→ G(Z/nZ)

is surjective.

1.2 Expanders and super-approximation

Suppose G is a group and Ω is a subset of G. We say Ω is a symmetric subset if the
inverse of every element of Ω is in Ω. The Cayley graph of G with respect to Ω is an
undirected graph whose set of vertices is G and g1, g2 ∈ G are connected exactly when
g−11 g2 ∈ Ω. The Cayley graph ofG with respect to Ω is denoted by Cay(G; Ω). Notice
that Cay(G; Ω) is a |Ω|-regular graph; this means that the degree of every vertex is
|Ω|. The set of neighbors of g is gΩ = {gw| w ∈ Ω}. Continuing, we obtain that the
connected component of g is the set

{gw1 · · ·wn| n ∈ Z+, w1, . . . , wn ∈ Ω}.

Since Ω is symmetric, {w1 · · ·wn| n ∈ Z+, w1, . . . , wn ∈ Ω} is the subgroup gener-
ated by Ω. Hence Cay(G,Ω) is connected if and only if Ω is a generating set of G.
Therefore the strong approximation is equivalent to saying that if Ω is a symmetric
generating set of a Zariski-dense subgroup of G(Z[1/q0]), then under the right condi-
tions on G and n, Cay(G(Z/nZ), πn(Ω)) is a connected graph. Super-approximation
is about whether these graphs are highly connected.

Next we formulate what it means for a family of graphs to be highly connected.
One way of thinking about the well-connectivity is in terms of people who live in a
society. A society is well-connected if it is not consist of two or more communities that
are not well-integrated. This means what links these communities together is much less
than their sizes.

We can quantify this using the Cheeger constant of a graph. The Cheeger constant
of a finite graph G is

h(G ) := min

{
|E(A,Ac)|

min{|A|, |Ac|}

∣∣∣∣ A ⊆ VG

}
,

where E(A,Ac) is the set of all the edges that connect a vertex in A to a vertex in Ac.
Notice that in a k-regular graph starting with a vertex v0, the number of vertices that
are of distance at most n from v0 is at least

min{|VG |/2, (1 + h(G )/k)n}.

This means these balls are expanding exponentially fast. motivated by this, we say a
family {Gi}i of k-regular graphs is a family of expanders if and only if infi h(Gi) > 0;
this means there is a uniform positive constant for the Cheeger constants of all of these
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graphs. This implies that the number of vertices in balls of these graphs grow uniformly
exponentially fast (till they contain at least half of the vertices).

The first explicit construction of a family of expanders is due to Margulis; this
result was based on finitely generated groups with Kazhdan’s property (T). A result of
Selberg implies that {Cay(SL2(Z/nZ),Ωi)}n is a family of expanders if i = 1, 2 and
gcd(n, i) = 1, where

Ωi =

{(
1 ±i
0 1

)
,

(
1 0
±i 1

)}
.

Selberg’s proof was based on the Kloosterman sum, and his result can be applied to
every finitely generated congruence subgroup of SL2(Z). A subgroup of SL2(Z) is
called a congruence subgroup if it contains kerπn for some n, where

πn : SL2(Z)→ SL2(Z/nZ)

is the residue modulo n congruence map. The group generated by Ω1 is SL2(Z), and
as you can see in Exercise 4, the subgroup generated by Ω2 contains the kernel of π4.

The group generated by Ω3, however, is of infinite index in SL2(Z) (see Exercise
8), and so it cannot be a congruence subgroup. Notice that the Zariski-closure of the
group generated by Ω3 contains the group generated by Ω1, and so it is Zariski-dense in
SL2(Z). Peter Sarnak refer to this type of groups as thin groups; that means a thin group
is a Zariski-dense subgroup of infinite index in G(Z) (or more generally G(Z[1/q0]))
for some algebraic group G. Since the group generated by Ω3 is Zariski-dense in
SL2(Z), by the strong approximation, for every large enough prime p (in fact it is
enough to assume that p ≥ 5), Cay(SL2(Z/pZ),Ω3) is connected. Lubotzky asked
whether these graphs form a family of expanders. This is referred to Lubotzky’s 1-2-3
problem, and Bourgain and Gamburd in their seminal work gave an affirmative answer
to this question.

Theorem 4 (Bourgain–Gamburd). Suppose Ω is a finite symmetric subset of SL2(Q).
Let Γ be the group generated by Ω. Suppose Γ is Zariski dense in SL2(Q). Then there
is p0 such that the family of graphs {Cay(SL2(Z/pZ), πp(Ω))| p ≥ p0, p prime} is a
family of expanders.

We refer to results of this type as super-approximation. The main goals of these
notes are to cover the relevant general strategies, go over the type of tools involved, and
survey the best known super-approximation results. This comes with the cost of not
going into the details of most of the proofs.

1.3 Exercises

1. (Continued fraction) For a sequence of numbers {bi}∞i=0, we use [b0; b1, . . . , bm]
to denote

b0 +
1

b1 +
1

· · ·+
1

bm−1 +
1

bm
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and [b0; b1, . . .] to denote limm→∞[b0; b1, . . . , bm] (if this limit exists).

a) For a sequence of non-zero real numbers {bi}∞i=0, suppose(
b0 1
1 0

)
· · ·
(
bn 1
1 0

)(
x
1

)
=

(
rn(x)
sn(x)

)
.

Prove that rn(x)sn(x)
= [b0; b1, . . . , bn, x]. (Hint: use induction on n.)

b) For a sequence of non-zero integers {bi}∞i=0, let p−1 = 1, q−1 = 0,

pn+1 := pnbn+1 + pn−1 qn+1 := qnbn+1 + qn−1

for every non-negative integer n. Prove that(
b0 1
1 0

)
· · ·
(
bn 1
1 0

)
=

(
pn pn−1
qn qn−1

)
,

for every non-negative integer n. Deduce that pn
qn

= [b0; b1, . . . , bn],
pnqn−1 − pn−1qn = (−1)n+1, and gcd(pn, qn) = 1.

c) For a sequence of positive integers {bi}∞i=0, suppose pn
qn

is the simple form
of the rational number [b0; b1, . . . , bn]. Use the previous part to show that

pn
qn
− pn−1
qn−1

=
(−1)n+1

qn−1qn
,

and deduce that limn→∞
pn
qn

exists, and so [b0; b1, . . .] is well-defined.

d) For a non-zero real number x, we let x0 := x and define the sequences
{ai}∞i=0 and {xi}∞i=0 inductively as follows. We set ai := bxic for every
integer i and xi+1 := 1

{xi} where {y} := y−byc is the fractional part of y.
We stop if xi is an integer. suppose pn

qn
is the simple form of [a0; a1, . . . , an].

Show that x = [a0; a1, . . . , an, xn+1] for every non-negative integer n.

e) In the setting of the previous item, prove that

x =
pnxn+1 + pn−1
qnxn+1 + qn−1

,

and deduce that

x− pn
qn

=
(−1)n

qn(qnxn+1 + qn−1)
.

f) In the above setting, prove that x = [a0; a1, . . .], and

1

qn(qn + qn+1)
≤
∣∣x− pn

qn

∣∣ ≤ 1

qnqn+1
.
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g) For an irrational number α = [a0; a1, . . .], let

M(α) := lim sup
n→∞

[an; an+1, . . .] + [0; an−1, . . . , a1].

Prove that there are infinitely many rational numbers of simple form p
q such

that |α− p
q | ≤

1
M(α)q2 .

h) (Hurwitz’s theorem) Prove that M(α) ≥
√

5 for every rational number α,
and equality holds for the Golden ratio [1; 1, 1, . . .].

2. (Generating SL2(Z)) Suppose γ =

(
a c
b d

)
∈ GL2(Z).

a) Suppose a
b = [c0; c1, . . . , cn]. Then

γ =

(
c0 1
1 0

)
· · ·
(
cn 1
1 0

)(
1 e
0 ±1

)
for some integer e.

b) Prove that SL2(Z) =

〈(
1 1
0 1

)
,

(
0 1
−1 0

)〉
.

3. (Strong approximation: the SL2(Z) case) Suppose n is a positive integer and

γ̄ =

(
ā c̄
b̄ d̄

)
∈ SL2(Z/nZ).

a) Prove that there are integers a and b such that πn(a) = ā, πn(b) = b̄, and
gcd(a, b) = 1, where πn is the residue modulo n congruence map.

b) Prove that there are λ ∈ SL2(Z) and ē ∈ Z/nZ such that

πn(λ)−1γ̄ =

(
1 ē
0 1

)
.

c) Prove that πn : SL2(Z)→ SL2(Z/nZ) is surjective.

4. Let α :=

(
1 2
0 1

)
and β :=

(
1 0
2 1

)
. Suppose a is odd and b is a non-zero even

number. Let v :=

(
a
b

)
.

a) (The reduction process) Prove that there is l ∈ Z such that

min{‖αlv‖∞, ‖βlv‖∞} < ‖v‖∞.

b) Prove that there is γ ∈ 〈α, β〉 such that γv = ±
(

1
0

)
.

c) Prove that 〈α, β,−I〉 = kerπ2 where π2 : SL2(Z) → SL2(Z/2Z) is the
residue modulo 2 congruence map.
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d) Prove that 〈α, β〉 contains the kernel of π4.

5. (Ping-pong lemma) Suppose G is a group and it acts on a set X . Suppose G1

and G2 are two subsets of G, |G1| ≥ 2, and |G2| ≥ 3. Suppose X1 and X2 are
two subsets of X such that X1 6⊆ X2 and X2 6⊆ X1. Suppose

(G1 \ {1}) ·X2 ⊆ X1 and (G2 \ {1}) ·X1 ⊆ X2.

Prove that 〈G1 ∪G2〉 ' G1 ∗G2.

6. Suppose a ≥ 2. Let α :=

(
1 a
0 1

)
, β :=

(
1 0
a 1

)
, G1 := 〈α〉, and G2 := 〈β〉.

Let X1 := {(x, y) ∈ R2| |x| ≥ a
2 |y|} and X2 := {(x, y) ∈ R2| |x| ≤ a

2 |y|}.

a) Consider the natural linear action of SL2(R) on R2. Prove that

(G1 \ {I}) ·X2 ⊆ X1 and (G2 \ {I}) ·X1 ⊆ X2.

b) Prove that α and β freely generate a free subgroup of SL2(R).

7. Let α := ±
(

1 1
−1 0

)
and β := ±

(
0 1
−1 0

)
be two elements of the group

PSL2(Z) := SL2(Z)/{±I}.

a) Use Exercise 2 to show that PSL2(Z) = 〈α, β〉 and deduce that there is a
surjective group homomorphism from Z/3Z ∗ Z/2Z to PSL2(Z).

b) Consider the Möbius group action of PSL2(R) on C ∪ {∞}; that means

±
(
a b
c d

)
· z :=

az + b

cz + d

(justify that it is a group action). Notice that

α · z = −1− 1

z
, α−1 · z = − 1

z + 1
, and β · z = −1

z
.

Let X1 be the set of all positive irrational real numbers and X2 be the set
of all the negative irrational real numbers. Show that

(〈α〉 \ {I}) ·X1 ⊆ X2 and (〈β〉 \ {I}) ·X2 ⊆ X1.

c) Prove that there is an isomorphism PSL2(Z) ' Z/3Z∗Z/2Z which factors
through 〈α〉 ∗ 〈β〉.

8. Prove that
(

1 3
0 1

)
and

(
1 0
3 1

)
generate a subgroup of infinite index in SL2(Z).

(Hint: Use Exercise 7.)





Chapter 2

Random-walks on a graph and
expanders

2.1 Basics of random-walks on a finite graph

A random walk on a graph G is a sequence of random variables {Xi}∞i=0 with
values on the set of vertices VG of G such that, for very non-negative integer i, Xi+1 is
chosen independently at random from the neighbors of Xi. For every vertex v,

P(Xi+1 = v) =
∑
w∈VG

P(Xi = w)P(w → v). (2.1)

Here for every w ∈ VG , P(w → v) = 1
dw

[{w, v} ∈ EG ] where [{w, v} ∈ EG ] = 1 if
w is connected to v in G and it is zero otherwise and dw is the degree of the vertex
w; that means the number of edges that have w as one of their vertices. Let µi be the
distribution of Xi; that means

µi : V → [0, 1], µi(v) = P(Xi = v).

Suppose the set of vertices V := VG is {v1, . . . , vn}. Then B := {δv1 , . . . , δvn}
is an orthonormal basis of L2(V ). For every function f ∈ L2(V ), 〈f | denotes the
row matrix

(
f(v1) · · · f(vn)

)
and |f〉 denotes the transpose of 〈f |. Notice that

f =
∑n
i=1 f(vi)δvi , and so 〈f | is simply the matrix representation of f with respect to

the basis B.
Let T be the transition matrix of the random-walk; that means the (i, j)-entry of T

is equal to
P(vi → vj) =

1

dvi
[{vi, vj} ∈ EG ].

Then by (2.1), we have
〈µi+1| = 〈µi|T,

and so the probability law after l steps random-walk is given by 〈µl| = 〈µ0|T l. We
can understand and compute powers of a matrix the best if it is diagonal or at least
diagonalizable. We know that a symmetric matrix is diagonalizable. We notice that

13
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in general the transition matrix is, however, not necessarily symmetric. In the case of
random-walk on a finite graph the transition matrix is symmetric if and only if all the
vertices have the same degree; that means when the graph is regular. In general, we
have

T = D−1G AG ,

where DG is the diagonal matrix diag(dv1 , . . . , dvn) and AG is the adjacency matrix
of the graph; that means the (i, j) entry is 1 if vi is connected to vj and 0 otherwise.
Hence for every integer l, we have

T l = D−1G AGD
−1
G AG · · ·D−1G AG .

Therefore
T l = D

−1/2
G M l

GD
1/2
G , (2.2)

where
MG = D

−1/2
G AGD

−1/2
G .

We notice that MG is a real symmetric. Hence it has a right orthonormal basis
{|φ1〉, . . . , |φn〉} with real eigenvalues λ1 ≥ · · · ≥ λn. Since MG is symmetric,
{〈φ1|, . . . , 〈φn|} is left eigenbasis. By (2.2), we deduce T is diagonalizable with a right
eigenbasis {D−1/2G |φ1〉, . . . , D−1/2G |φn〉}, a left eigenbasis {〈φ1|D1/2

G , . . . , 〈φn|D1/2
G },

and eigenvalues λ1 ≥ · · · ≥ λn. If 〈µ0| =
∑n
i=1 ci〈φi|D

1/2
G , then by (2.2) we obtain

that

〈µl| =
n∑
i=1

λlici〈φi|D
1/2
G . (2.3)

So it is crucial to gain a better understanding of λi’s. This is achieved by looking at the
multiplication by T from left:

T : L2(V )→ L2(V ) |T (f)〉 = T |f〉.

Notice that for every v ∈ V , T (f)(v) =
∑
w P(v → w)f(w) is the average of the

values of f at the neighbors of v. Based on the fact that T is an averaging operator
and the maximum modulus principle, we can gain some basic information on λi’s.

For every i, let φ̄i : V → R, φ̄i(v) := d
−1/2
v φi(v). Then T (φ̄i) = λiφ̄i for every i.

After replacing φ̄i with−φ̄i, if needed, we can and will assume that for some w(i)
0 ∈ V ,

φ̄i(w
(i)
0 ) = ‖φ̄i‖∞ = maxv∈V {|φ̄i(v)|}. Hence

|λi||φ̄i(w(i))| = |T (φ̄i)(w
(i)
0 )| ≤

∑
v

P(w(i) → v)|φ̄i(v)| ≤ ‖φ̄i‖∞. (2.4)

By (2.4), we obtain that |λi| ≤ 1 for every i.

Lemma 5. Every eigenvalue of TG is in the interval [−1, 1].

Next, we investigate the extreme possible values. Notice that T 1V = 1V where
1V is the constant function 1; we can observe this based on the fact that T f(v) is the



2.1. BASICS OF RANDOM-WALKS ON A FINITE GRAPH 15

average of the values of f at the neighbors of v. Hence 1 is definitely an eigenvalue of
T , and so by Lemma 5, λ1 = 1.

A function in the kernel of T − I is called harmonic. Suppose f is a non-zero real
harmonic function. After replacing f with −f , if needed, we can and will assume that
f(w0) = ‖f‖∞ for some w0 ∈ V . Then

f(w0) = |f(w0)| ≤
∑
v

P(w0 → v)|f(v)| ≤ ‖f‖∞,

which implies that for every v ∈ V , either P(w0 → v) = 0 or f(v) = f(w0). This
means f(v) = f(w0) for v that is connected to w0. Repeating this argument, we
obtain that f(v) = f(w0) for every v in the connected component of w0 in G . Con-
versely, characteristic functions of connected components of G are harmonic functions.
Altogether, we have proved the following statement.

Lemma 6. The dimension of the operator T − I is equal to the number of connected
components of G . In particular, G is connected if and only if λ2 < 1.

Suppose T has eigenvalue −1 and T f = −f for a nonzero function f . Replacing
f with −f , if needed, we can and will assume that f(w0) = ‖f‖∞ for some w0 ∈ V .
Hence

0 =
∑
v

P(w0 → v)(f(w0) + f(v)) and f(w0) + f(v) ≥ 0, for every v.

Therefore for every neighbor v of w0, we have f(v) = −f(w0). Repeating this
argument, we see that the value of f at every neighbor of a neighbor of w0 is again
f(w0). We deduce that the connected component of w0 is a bipartite graph; this means
the vertices of this connected component can be partitioned into two sets A and B, and
every edge has an element in A and an element in B.

Lemma 7. In the above setting λn = −1 if and only if G has a bipartite connected
component.

Proof. We have already proved that if λn = −1, then G has a bipartite connected
component. For the converse look at Exercise 1.

By (2.3), and Lemmas 6 and 7, we obtain the following result on the rate of conver-
gence of random-walks on a finite connected non-bipartite regular graph.

Proposition 8. Suppose {Xi}∞i=0 is a random-walk on a finite connected non-bipartite
k-regular graph G (k-regular means that the degree of all the vertices are k). Suppose
µi is the distribution of Xi. Suppose λ1 ≥ . . . ≥ λn are as before the eigenvalues of
the transition matrix. Let λG := max{|λ2|, |λn|}. Then the following statements hold.

1. (L2-convergence) For every f ∈ L2(V ) and every positive integer l,∥∥∥∥T lf − 〈f,1V 〉
|V |

1V

∥∥∥∥
2

≤ λlG ‖f‖2

where T is as before.
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2. (L1-convergence) For every f ∈ L1(V ) and every positive integer l,∣∣∣∣E[f(Xl)]−
∑
v∈V f(v)

|V |

∣∣∣∣ ≤ λlG ‖f‖2;

in particular, for every A ⊆ V ,∣∣∣∣P(Xl ∈ A)− |A|
|V |

∣∣∣∣ ≤ λlG√|A|.
3. (Mixing) For every f, g ∈ L2(V ),∣∣∣∣〈f,T lg〉 −

(∑
v∈V

f(v)

)∑
v∈V g(v)

|V |

∣∣∣∣ ≤ λlG ‖f‖2‖g‖2.
Proof. Suppose {φ1, . . . , φn} is as before an orthonormal basis of MG . Notice that
since G is k-regular, MG = TG . Also notice that φ1 = 1√

|V |
1V , and for every

f ∈ L2(V ), the orthogonal projection of f to the space of constant functions is

〈f,1V 〉
|V |

1V . (2.5)

For f ∈ L2(V ), suppose f =
∑n
i=1 ciφi. Then ‖f‖22 =

∑n
i=1 |ci|2 and by (2.5), we

have

T lf − 〈f,1V 〉
|V |

1V =

n∑
i=2

λliciφi.

This implies that∥∥∥∥T lf − 〈f,1V 〉
|V |

1V

∥∥∥∥2
2

=

n∑
i=2

|λi|2l|ci|2 ≤ λ2lG
n∑
i=2

|ci|2 ≤ λlG ‖f‖22.

This completes the proof of the first part.
Assuming that the first L1-convergence inequality is proved, we let f be the

characteristic function 1A of A. The desired inequality follows from the fact that
E[1A(Xl)] = P(Xl ∈ A). For the rest of the inequalities look at the exercise 2.

We refer to λG as the spectral gap of this random walk. Notice that

λG = ‖TG |L2(V )◦‖op

where L2(V )◦ := {f ∈ L2(V )|
∑
v∈V f(v)} is the space of functions that are orthog-

onal to the space of constant functions.
It is intuitive that a random-walk on a well-connected regular graph should quickly

converge to equidistribution. This means having a lower bound for the Cheeger constant
h(G ) of a finite k-regular graph G should give us an upper bound for λG . In the rest of
this chapter, we prove a variant of this result.
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2.2 Discrete Laplacian

Suppose G is a finite k-regular graph. Pick an orientation for the edges. For every
edge e ∈ EG , let e− be the initial vertex and e+ be the terminal vertex of the oriented
version. Thinking about a function f : VG → R as the amount of charge on nodes,
df(e) := f(e+)− f(e−) measures the amount of the resistance times the current on
that edge. We can also think of the vertices as 0-cells, the edges as 1-cells, and

d : L2(V )→ L2(E), df(e) := f(e+)− f(e−)

as the boundary map. We notice that

d∗ : L2(E)→ L2(V ), d∗g(v) =
∑
v=e+

g(e)−
∑
v=e−

g(e)

(See Exercise 3). Thinking about a function g on the edges as the amount of a flow
going through that edge, we can think about d∗g(v) as the amount of the flow that sinks
in v. For every f ∈ L2(V ), we have

d∗df(v) =
∑
v=e+

df(e)−
∑
v=e−

df(e)

=
∑
v=e+

(f(e+)− f(e−))−
∑
v=e−

(f(e+)− f(e−))

=dvf(v)−
∑
w∼v

f(w)

=k((I −TG )(f))(v),

where w ∼ v means {w, v} is an edge in G . Hence

LG := I −TG =
1

k
d∗d, (2.6)

and it is called the discrete Laplacian of the k-regular graph G . Assuming that
{φ1, . . . , φn} is an orthonormal basis of T with eigenvalues λ1 ≥ · · · ≥ λn, by
(2.6) we obtain that

LG (φi) = (1− λi)φi
for every i. Hence assuming G is connected, eigenvalues of LG are

0 = 1− λ1 < 1− λ2 ≤ · · · ≤ 1− λn ≤ 2.

For f ∈ L2(V ), suppose f =
∑n
i=1 ciφi. Then ‖f‖2 =

∑n
i=1 |ci|2 and

‖df‖22 =〈df, df〉 = 〈f, d∗df〉 = k〈f,L f〉

=k
∑
i,j

cicj〈φi,L φj〉 = k
∑
i,j

(1− λj)cicj〈φi, φj〉

=k

n∑
i=1

(1− λi)|ci|2 = k

n∑
i=2

(1− λi)|ci|2. (2.7)

By (2.7), we obtain the following description of 1− λ2.
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Lemma 9. In the previous setting,

1− λ2 =
1

k
min

{
‖df‖22
‖f‖22

∣∣∣∣ f ∈ L2(V )◦ \ {0}
}
.

Proof. By (2.7), we have ‖df‖22 ≥ k(1−λ2)
∑n
i=2 |ci|2 where f =

∑n
i=1 ciφi. Notice

that ci = 〈f, φi〉 for every i; in particular c1 = 0 as φ1 is constant and f ∈ L2(V )◦.
Therefore ‖f‖22 =

∑n
i=2 |ci|2. Altogether, we have ‖df‖22 ≥ k(1− λ2)‖f‖22 for every

f ∈ L2(V )◦. Therefore

1− λ2 ≤
1

k
min

{
‖df‖22
‖f‖22

∣∣∣∣ f ∈ L2(V )◦ \ {0}
}
. (2.8)

We also notice that ‖dφ2‖22 = k〈φ2,L φ2〉 = k(1 − λ2), and this shows that the
equality in (2.8) holds. This completes the proof.

Sometimes it is useful to notice that

‖df‖22 =
∑
e∈E
|f(e+)− f(e−)|2 =

∑
w∼v
|f(v)− f(w)|2,

and so
k(1− λ2) ≤

∑
w∼v |f(v)− f(w)|2∑

v |f(v)|2

if
∑
v f(v) = 0 and f 6= 0.

Next we show that the Cheeger constant can be described based on an L1-version
of Lemma 9. This is done based on finding various good cuts.

2.3 Finding good cuts

In a society, communities shape based on certain features. Inspired by this, in social
medias, we try to find certain features that can distinguish various communities. A
basic such example is finding a feature that can split people into two communities; this
means finding a good cut in the underlying graph. In mathematical language, a feature
is simply a function f on the set of the vertices of the given (social media) graph, and
after picking a critical value c0, we split the vertices based on whether the value of f at
the given vertex is more or less than c0.

Suppose G is a finite graph with the set of vertices V and set of edges E. For
f : V → R and c ∈ R, let

V −f,c := {v ∈ V | f(v) < c},

and

hG (f) := inf
c

|E(V −f,c, V \ V
−
f,c)|

min{|V −f,c|, |V \ V
−
f,c|}

.

This means hG (f) quantifies how good of a cut we can get using f . We can view f
as a projection of the graph G to a line. Starting with a measure µ on R, using the
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projection given by f , we can put a weight on each edge. For an edge e = {v, w}, let Ie
be the interval with the end points f(v) and f(w). Then the weight of e corresponding
to µ and f is µ(Ie).

In this section, we use a probabilistic method to find upper bounds for hG (f).

Lemma 10. Suppose µ is a measure on R, and f : V → R. For every edge e = {v, w},
let Ie be the interval with end points f(v) and f(w). Then∫

|E(V −f,c, V \ V
−
f,c)|dµ(c) =

∑
e

µ(Ie).

Proof. Notice that e ∈ E(V −f,c, V \ V
−
f,c) if and only if c ∈ Ie. Hence∫

|E(V −f,c, V \ V
−
f,c)|dµ(c) =

∑
e

∫
[e ∈ E(V −f,c, V \ V

−
f,c)]dµ(c) =

∑
e

µ(Ie).

This completes the proof.

Lemma 11. Suppose µ is a measure on R such that µ({c}) = 0 for every c ∈ R, and
f : V → R. Let c0 be the median of f(v)’s as v ranges in V . For every v ∈ V , let Iv
be the interval with the end points c0 and f(v). Then∫

min{|V −f,c|, |V \ V
−
f,c|}dµ(c) =

∑
v

µ(Iv).

Proof. Notice that min{|V −f,c|, |V \ V
−
f,c|} = |V −f,c| if and only if c ≤ c0. Hence∫

min{|V −f,c|, |V \ V
−
f,c|}dµ(c) =

∫
c≤c0
|V −f,c|dµ(c) +

∫
c>c0

|V \ V −f,c|dµ(c)

=
∑
v

[f(v) < c0]µ(f(v), c0] + [f(v) ≥ c0]µ(c0, f(v)]

=
∑
v

µ(Iv).

This completes the proof.

Theorem 12. Suppose µ is a measure on R such that µ({c}) = 0 for every c ∈ R.
Suppose f : V → R is a function such that µ([minv f(v),maxv f(v)]) 6= 0. Let c0 be
the median of f(v)’s as v ranges in V . For v ∈ V , let Iv be the interval with the end
points c0 and f(v), and for e = {v, w} ∈ E, let Ie be the interval with the end points
f(v) and f(w). Then

hG (f) ≤
∑
e∈E µ(Ie)∑
v∈V µ(Iv)

.

Proof. By Lemmas 10 and 11, we have∫
(
∑
v

µ(Iv))|E(V −f,c, V \ V
−
f,c)| − (

∑
e∈E

µ(Ie)) min{|V −f,c|, |V \ V
−
f,c|}dµ(c) = 0.
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Therefore for some c we have that

(
∑
v

µ(Iv))|E(V −f,c, V \ V
−
f,c)| −

∑
e∈E

µ(Ie) min{|V −f,c|, |V \ V
−
f,c|} ≤ 0,

and so

hG (f) ≤
|E(V −f,c, V \ V

−
f,c)|

min{|V −f,c|, |V \ V
−
f,c|}

≤
∑
e∈E µ(Ie)∑
v µ(Iv)

.

This finishes the proof.

Special cases of µ give us interesting results. For instance the case when µ is the
Lebesgue measure implies the following Theorem.

Theorem 13. Suppose G is a finite graph with the set of vertices V . Let h(G ) be the
Cheeger constant of G . Then

h(G ) = inf

{
‖df‖1
‖f‖1

∣∣∣∣ f ∈ L1(V ) \ {0},Med(f) = 0

}
,

where Med(f) is the median of f(v)’s as v ranges in V .

Notice that for theL2-norm in the denominator we took a shift of f which minimized
the L2-norm, and here for the L1-norm we are taking a shift of f which minimizes the
L1-norm! It worths pointing out that df does not change as we shift f by a constant.

Proof of Theorem 13. Applying Theorem 12 for the case when µ is the Lebesgue
measure `, we obtain that

h(G ) ≤
∑
e∈E `(Ie)∑
v∈V `(Iv)

,

where E is the set of edges of G , for e = {v, w}, Ie is an interval with the end points
f(v), f(w), and for v ∈ V , Iv is an interval with the end points Med(f) = 0 and f(v).
Hence

`(Ie) = |df(e)| and `(Iv) = |f(v)|.

Therefore h(G ) ≤ ‖df‖1‖f‖1 if Med(f) = 0 and f 6= 0.
Suppose h(G ) = |E(A,Ac)|

|A| for some A ⊆ V with |A| ≤ |V |/2. Let f = 1A

be the characteristic function of A. Since |A| ≤ |V |/2, Med(f) = 0. Notice that
‖df‖1 = |E(A,Ac)| and ‖f‖1 = |A|, and so h(G ) = ‖df‖1

‖f‖1 . This completes the
proof.

2.4 Discrete isoperimetric inequalities

In this section, we use the L2-optimization description of 1−λ2 (see Lemma 9) and
the bounds that we have found for h(G ) using Theorem 12 , and prove isoperimetric
inequalities.

Using Theorem 12 for the case when µ is the Lebesgue measure, we found an L1-
optimization description of h(G ). Thinking about edges as wires laying on a surface,
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the Lebesgue measure more or less ends up giving us the total weight on top of a point.
Next, we roughly think about this graph balanced about the median of f and measure
the torque of each edge. This means we assume that 0 is the median and consider the
measure µ given by the density function

dµ(t) := |t|dt.

Notice that µ([a, b]) =
∫ b
a
|t|dt = b|b|−a|a|

2 . Hence∑
v

µ(Iv) =
‖f‖22

2
, (2.9)

where Iv is the interval with the endpoints Med(f) = 0 and f(v). We also have∑
e

µ(Ie) =
1

2

∑
e

(f(e+)|f(e+)| − f(e−)|f(e−)|) (2.10)

Notice that for every a, b ∈ R, we have

b|b| − a|a| ≤ |b− a|(|b|+ |a|). (2.11)

By (2.10) and (2.11), we obtain that∑
e

µ(Ie) ≤
∑
e

|df(e)|
(
|f(e+)|+ |f(e−)|

2

)
,

and so by the Cauchy-Schwarz inequality, we have

∑
e

µ(Ie) ≤ ‖df‖2

√√√√∑
e

(
|f(e+)|+ |f(e−)|

2

)2

. (2.12)

Because (a+b2 )2 ≤ a2+b2

2 , by (2.12), we obtain

∑
e

µ(Ie) ≤ ‖df‖2

√∑
e

|f(e+)|2 + |f(e−)|2
2

=

√
k

2
‖df‖2‖f‖2, (2.13)

if G is a k-regular graph.
By (2.9), (2.13), and Theorem 12, we deduce the following result.

Lemma 14. Suppose G is a k-regular graph and f : V → R is a function whose
median is 0. Then

h(G ) ≤
√

2k
‖df‖2
‖f‖2

.

Now we are ready to prove the discrete isoperimetric inequalities.

Theorem 15. Suppose G is a k-regular graph. Then in the previous setting, we have

1− λ2
2

≤ h(G )

k
≤
√

2(1− λ2).
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Proof. Applying Lemma 14 to f = φ2, the second eigenfunction of the discrete
Laplacian, we deduce that

h(G ) ≤
√

2k
‖dφ2‖2
‖φ2‖2

=
√

2k
√
k(1− λ2) = k

√
2(1− λ2). (2.14)

To obtain a lower bound for the Cheeger constant, we start with a subset A which gives
us the Cheeger constant; that means we assume

h(G ) =
|E(A,Ac)|
|A|

and |A| ≤ 1

2
|V |.

Let f be the orthogonal projection of the characteristic function 1A of A to L2(V )◦;
that means

f := 1A −
|A|
|V |

1V .

Then by Lemma 9, we have

k(1− λ2) ≤ ‖df‖
2
2

‖f‖22
. (2.15)

Notice that df = d1A, and for every edge e, we have

|d1A(e)| = |1A(e+)− 1A(e−)| = 1E(A,Ac)(e). (2.16)

By (2.15) and (2.16), we deduce that

k(1− λ2) ≤
‖1E(A,Ac)‖22
‖f‖22

=
|E(A,Ac)|

‖1A‖22 −
( |A|
|V |
)2‖1V ‖22 =

|E(A,Ac)|
|A| − |A|

2

|V |

. (2.17)

The term in the denominator is |A|
( |A|c
|V |
)
, and |Ac| ≥ |V |/2. Hence the denominator

in (2.17), is at least |A|/2. Therefore, we deduce that

k(1− λ2) ≤ 2
|E(A,Ac)|
|A|

= 2h(G ). (2.18)

By (2.14) and (2.18), we obtain that

1− λ2
2

≤ h(G )

k
≤
√

2(1− λ2),

which finishes the proof.

Based on these isoperimetric inequalities, we get a spectral description of a family
of expander graphs.

Theorem 16. An infinite family {Gi}i∈I of k-regular graphs is a family of expanders
if and only if supi λ2(Gi) < 1. In particular, a family {Gi}i∈I of k-regular graphs is a
family expanders if supi λGi < 1.
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Proof. If {Gi}i is a family of expanders, then there is a positive number c0 such that
h(Gi) ≥ c0 for every i. By Theorem 15, we deduce that

√
2(1− λ2(Gi)) ≥

c0
k
, and so λ2(Gi) ≤ 1− 1

2

(
c0
k

)2

for every i. Hence supi λ2(Gi) < 1.
For the converse, suppose supi λ2(Gi) = c′0 for some c′0 < 1. Then by Theorem 15,

for every i, we have
k

2
(1− c′0) ≤ h(Gi),

and so {Gi}i is a family of expanders.
The final claim follows from the fact that λGi = max{|λ2(Gi)|, |λn(Gi)|}.

In some texts, having a non-trivial bound for λ2(Gi)’s is called one-sided expander
and having a non-trivial bound for λGi ’s is called two-sided expander.

2.5 Exercises

1. Suppose G is a finite graph that has a bipartite connected component. Prove that
TG has eigenvalue −1.

(Hint: SupposeV has two disjoint subsetsA andB such that if an edge e intersects
A ∪B, then |e ∩A| = |e ∩B| = 1. Let f := 1A − 1B where for a subset Y of
V , 1Y is the characteristic function of Y . Prove that T f = −f .)

2. Prove the L1-convergence and the mixing property of a random-walk in a finite
regular graph given in Proposition 8.

(Hint. For the mixing, use the Cauchy-Schwarz inequality and obtain∣∣∣∣〈f,T lg − 〈g,1V 〉
|V |

1V

〉∣∣∣∣ ≤ ‖f‖2∥∥∥∥T lg − 〈g,1V 〉
|V |

1V

∥∥∥∥
2

≤ λlG ‖f‖2‖g‖2,

and finish the proof. For the L1-convergence, use the mixing inequality for g
equals to the initial distribution µ0. Notice that

〈f,T lµ0〉 = E[f(Xl)] and
∑
v∈V

µ0(v) = 1.)

3. Suppose G = (V,E) is a directed graph. Let

d : L2(V )→ L2(E), df(e) := f(e+)− f(e−).

Prove that
d∗g(v) =

∑
v=e+

g(e)−
∑
v=e−

g(e).
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(Hint. Notice that

〈df, g〉 =
∑
e∈E

df(e)g(e) =
∑
e∈E

(f(e+)− f(e−))g(e)

=
∑
v∈V

f(v)(
∑
v=e+

g(e)−
∑
v=e−

g(e)).)



Chapter 3

Fourier analysis and equidistribution

Based on the spectral description of expanders (see Theorem 16), we can say that
super-approximation is about the study of the rate of convergence of random-walks
to equidistribution on Cayley graphs of congruence quotients of finitely generated
subgroups of GLn(Z[1/q0]).

One of the classical tools for proving convergence to equidistribution is Fourier
analysis. In this chapter, we start by reviewing how Fourier analysis can help us prove
the equidistribution of irrational rotations. Then the basics of Fourier analysis on finite
groups is reviewed. We finish this chapter by defining and proving basic properties
of quasi-random groups; a concept introduced by Gowers. A mixing inequality and a
product result for large subsets will be proved for a quasi-random group.

3.1 Equidistribution of irrational rotations

We identify R/Z with a circle. This way a rotation can be identified with addition
in R/Z,

x+ Z 7→ α+ x+ Z.
We say a sequence {ai +Z}∞i=1 of points in R/Z is equidistributed if for every smooth
function f : R/Z→ C, we have

lim
N→∞

∑N
i=1 f(ai + Z)

N
=

∫
R/Z

f(t)dt. (3.1)

The following is a classical result, and we give a sketch of its proof based on Fourier
analysis on the compact abelian group R/Z.

Theorem 17. Suppose α is an irrational number. Then {nα+Z}∞n=1 is equidistributed
in R/Z.

Notice that if a sequence {ai+Z}∞i=1 of points is equidistributed, then their shift {t+
ai+Z}∞i=1 by t is also equidistributed for every t. Hence {ai+Z}∞i=1 is equidistributed
if and only if {TN (f)}∞N=1 converges to the constant function 〈f,1〉1 pointwise where

TN (f) =

∑N
i=1 f(t+ ai + Z)

N
.

25
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It is often hard to prove pointwise convergence of a sequence of functions. So first we
start with proving the weak convergence.

Lemma 18. Suppose α is an irrational number, and f : R/Z→ C is a smooth function.
For a positive integer N , let

TN (f)(t) =

∑N
n=1 f(t+ nα+ Z)

N
.

Then for every g ∈ L2(R/Z),

lim
N→∞

〈TN (f), g〉 = 〈f,1〉〈1, g〉. (3.2)

Proof. From Fourier analysis on R/Z, we know that {en(t)}n∈Z is an orthonormal
basis of L2(R/Z) where

en(t+ Z) := e2πint.

Hence we have

g =
∑
n∈Z

ĝ(n)en in the L2-norm, where ĝ(n) := 〈en, g〉.

This means limN→∞ ‖g −
∑
|n|≤N ĝ(n)en‖2 = 0. Hence by the Cauchy-Schwarz

inequality,
〈TN (f), g〉 =

∑
n∈Z

ĝ(n)〈TN (f), en〉 (3.3)

By (3.3), for every ε > 0, there is Mε such that

|〈TN (f), g〉 −
∑
|n|≤Mε

ĝ(n)〈TN (f), en〉| ≤ ε. (3.4)

(So to speak, we are focusing on the low frequencies.) Suppose we have proved that
(3.2) holds for g = en for every integer n. Then for every ε > 0, there exists Nε such
that

|〈TN (f), en〉 − 〈f,1〉〈1, en〉| ≤
ε

Mε max{|ĝ(n)|| |n| ≤Mε}
(3.5)

for every n ≤ Mε and N ≥ Nε. Notice that 1 = e0, and so 〈1, en〉 = [n = 0].
Therefore by (3.4) and (3.5), we obtain that

|〈TN (f), g〉 − 〈f,1〉ĝ(0)| ≤ 2ε

for every N ≥ Nε. Notice that ĝ(0) = 〈1, g〉, and so (3.2) follows. A closer look at
the above argument shows that in order to prove a weak convergence it is enough to
show it for test functions from an orthonormal basis.

Next we show that

lim
N→∞

〈TN (f), em〉 = 〈f,1〉[m = 0]. (3.6)
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To this end, we notice that

TN (f) =

∑N
n=1 λ(−nα)(f)

N
where (λ(a)(f))(t) := f(−a+ t),

and

λ̂(a)(f)(m) =

∫
R/Z

(λ(a)(f))(t)em(t)dt =

∫
R/Z

f(−a+ t)em(t)dt

=

∫
R/Z

f(s)em(a+ s)ds = em(a)

∫
R/Z

f(s)em(s)ds = em(a)f̂(m).

Hence

T̂N (f)(m) = f̂(m)

(∑N
n=1 em(−nα)

N

)
. (3.7)

By (3.7), we see that (3.6) holds if and only if there is a non-trivial cancellation in the
exponential sum

∑N
n=1 em(−nα). Here this cancellation comes for free as the given

exponential sum is simply a geometric series. This technique (due to H. Weyl), however,
is quite general (see Exercise 2).

Since α is irrational, if m 6= 0, then

|
N∑
n=1

em(−nα)| =
∣∣∣∣e(−mα)

1− e(−Nmα)

1− e(−mα)

∣∣∣∣ ≤ 2

|1− e(−mα)|
.

Hence by (3.7), we obtain that

|T̂N (f)(m)| ≤ 2|f̂(m)|
N |1− e(−mα)|

.

This implies that limN→∞ T̂N (f)(m) = 0 if m 6= 0. For m = 0, it is clear that
T̂N (f)(0) = f̂(0) = 〈1, f〉. Altogether (3.5) follows, which in turn completes the
proof.

Next we show how one can go from a weak convergence to a pointwise convergence.

Proof of Theorem 17. Suppose {ψε} is a family of smooth functions on R/Z converg-
ing to the dirac mass at x0 ∈ R/Z; that means the following properties hold:

1. ψε ≥ 0, 〈ψε,1〉 = 1.

2. The support of ψε is a subset of the ε-neighborhood of x0.

3. For every smooth function f : R/Z→ C, limε→0〈ψε, f〉 = f(x0).

Since R/Z is compact, every continuous function f on R/Z is uniformly continuous.
Hence for every ε > 0, there exists δ > 0 such that for every x, y ∈ R/Z that are
δ-close, we have

|f(x)− f(y)| ≤ ε.
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Hence for every positive integer N , we obtain

|TN (f)(x)− TN (f)(y)| ≤ 1

N

N∑
n=1

|f(nα+ x)− f(nα+ y)| ≤ ε (3.8)

if x and y are δ-close. Therefore by (3.8), for every y in the support of ψδ, we have
|TN (f)(y)− TN (f)(x0)| ≤ ε. Thus

|〈ψδ, TN (f)〉 − TN (f)(x0)| ≤ ε, (3.9)

for every δ that is small enough depending on ε and f . On the other hand, by Lemma 18,
for a fixed δ, if N is large enough depending on ε and δ, we have

|〈ψδ, TN (f)〉 − 〈f,1〉| ≤ ε. (3.10)

By (3.9) and (3.10), we obtain that

|〈1, f〉 − TN (f)(x0)| ≤ 2ε,

for every N which is large enough depending on ε. This implies that

lim
N→∞

TN (f)(x0) =

∫
R/Z

f(t)dt,

which finishes the proof.

3.2 Fourier analysis on finite groups

The Fourier analysis on a compact group G is the study of its (unitary) repre-
sentations as a way of analyzing its (complex valued) functions. In the proof of the
equidistribution of irrational rotations, we saw the importance of having an orthonormal
basis of L2(R/Z) that consists of eigenfunctions of the (left) translation by R/Z. When
G is a non-abelian compact group, L2(G), however, does not have an orthonormal
eigenbasis for the left translation action of G. Instead, we write L2(G) as a direct sum
of irreducible representations of G, and use that to find a semi-canonical orthonormal
basis for L2(G). This in turn can help us prove the Plancherel theorem.

In this section, we study the Fourier analysis only on finite groups, but as much as
possible, we treat it in a way that can be extended to compact groups.

A group homomorphism π : G→ GLn(C) is called a representation of G (for a
compact group, we further assume that π is continuous). We say π is a representation
of degree n and write deg π = n if it is a group homomorphism from G to GLn(C).
Notice that a group representation of degree n induces a G-group action on Cn; that
means for every v ∈ Cn and x ∈ G, x · v := π(x)(v) is a group action. To emphasize
that we are looking at Cn together with the G-action induced by π, we write Vπ instead
of Cn; and so deg π = dimVπ . Since the G-group action on Vπ is linear, we can view
Vπ as a CG-module where

CG :=

{∑
x∈G

f(x)x| f(x) 6= 0 only for finitely many terms
}
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is the group ring of G. This point of view works the best when G is a finite group.
We say two representation π1 and π2 are equivalent if there is a C-isomorphism

T : Vπ1
→ Vπ2

such that the following is a commuting diagram

Vπ1 Vπ1

Vπ2
Vπ2

π1(x)

T T

π2(x)

for every x ∈ G. This means for every x ∈ G, we have

π1(x) = T−1π2(x)T.

We say a representation is unitary if Vπ has an inner product which is invariant
under G. Notice that for every inner product 〈·, ·〉′ on Cn, there is a basis {u1, . . . , un}
of Cn such that 〈ui, uj〉′ = [i = j]. Suppose T : Cn → Cn is such that Tei = ui for
every i. Then for every v, w ∈ Cn, we have

〈v, w〉 = 〈Tv, Tw〉′,

where 〈·, ·〉 is the standard inner product. If 〈·, ·〉′ is G-invariant, we obtain that for
every x ∈ G and v, w ∈ Cn the following holds

〈v, w〉 = 〈Tv, Tw〉′ = 〈π(x)Tv, π(x)Tw〉′ = 〈T−1π(x)Tv, T−1π(x)Tw〉.

Hence π is equivalent with a representation π′ : G→ Un(C) where

Un(C) := {y ∈ GLn(C)| y∗y = I}

is the group of n-by-n matrices that preserve the standard inner product of Cn.
The set of fixed points of every group action is of special interest in almost every

example. When the action has additional geometric properties, one can use an averaging
technique to find a projection to the set of fixed points; for instance consider an affine
action on a convex set, isometries on a non-positive curvature symmetric space or
more generally isometries on a CAT(0) space. For the purposes of understanding
representations of a finite group, we use the averaging technique for the following
actions.

1. (Space of inner products) Let P+
n be the set of n-by-n positive definite Hermitian

forms:

P+
n := {a ∈ GLn(C)| a = a∗,∀v ∈ Cn \ {0}, 〈v|a|v〉 > 0}.

Notice that for every a ∈ P+
n , the following defines an inner product on Cn:

〈v, w〉a := 〈v|a|w〉.

Vice versa, if 〈·, ·〉 is an inner product on Cn, then [〈ei, ej〉] is in P+
n (why?).

For every x ∈ GLn(C) and inner product 〈·, ·〉, the following is another inner
product

〈xv, xw〉.
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This gives us a group action of GLn(C) on the set of inner products. Working
with elements of P+

n , we can concretely see this action: the following gives us
an affine action of GLn(C) on P+

n

x · a := x∗ax

(see Exercise 5). Suppose G is a compact subgroup of GLn(C). Let
∫
G
f(x)dx

be the integration with respect to the unique Borel G-invariant probability mea-
sure on G (this measure exists and it is called the Haar measure of G). For
instance, for a finite group G,∫

G

f(x)dx =

∑
x∈G f(x)

|G|
.

Let AG : P+
n → Mn(C), AG(a) :=

∫
G
x · a da; this means we are integrating

each entry separately. Since P+
n is a convex, one can show that the image of AG

is a subset of P+
n . Because the considered measure is G-invariant, one can show

that the image of AG is exactly the set of G-fixed points of P+
n .

2. (Intertwining operators) Suppose π1 : G→ GL(V1) and π2 : G→ GL(V2) are
two representations of G. Let HomC(V1, V2) be the set of C-linear homomor-
phisms from V1 to V2. For every x ∈ G and a ∈ HomC(V1, V2), let

x · a : V1 → V2, (x · a)(v1) := π2(x)(a(π1(x−1)(v1)));

alternatively, we can write

x · a := π2(x) ◦ a ◦ π1(x)−1.

Notice that · defines a linear action of G on HomC(V1, V2). Viewing Vi’s as
CG-modules, a ∈ HomC(V1, V2) is aG-fixed point precisely when a : V1 → V2
is a CG-module homomorphism. Such a map sometimes called an intertwining
operator, and the set of all intertwining operators is denoted by I(π1, π2). So

I(π1, π2) = HomCG(V1, V2) = HomC(V1, V2)G.

As before, for a compact group G and two of its representations π1, π2, let

AG : HomC(V1, V2)→ HomCG(V1, V2), AG(a) :=

∫
G

x · a dx,

and notice since the action is linear and the measure is G-invariant, AG is well-
defined.

Let’s make the above statements more precise by proving a more general result
about affine actions of finite groups. Let’s recall that we say that a subset X of Cn is
called a convex subset if for every x1, x2 ∈ X , the segment connecting them is a subset
of X; that means

{p1x1 + p2x2| 0 ≤ p1, p2 and p1 + p2 = 1} ⊆ X.
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Suppose X is a convex subset of Cn and G acts on X . We say this is an affine action if
for every x1, x2 ∈ X , non-negative p1 and p2 such that p1 + p2 = 1, and g ∈ G, we
have

g · (p1x1 + p2x2) = p1 g · x1 + p2 g · x2.

Notice that if X is a convex set and G acts on X by affine transformations, then for
every x1, . . . , xn ∈ X , non-negative numbers p1, . . . , pn that add up to 1, and g ∈ G,
we have that

m∑
i=1

pixi ∈ X and g · (
n∑
i=1

pixi) =

n∑
i=1

pi g · xi,

(see Exercise 6).

Lemma 19 (Averaging trick). Suppose G is a finite group, X is a convex subset of Cn,
and G acts by affine transformations on X . Then the set XG of the G-fixed points is
non-empty, the map

AG : X → XG, AG(x) :=

∫
G

g · x dg

where
∫
G
f(g) dg = 1

|G|
∑
g∈G f(g) is well-defined, and AG ◦AG = AG.

Proof. For every x ∈ X , the G-orbit of x is a subset of X , and so by the previous
remark (see Exercise 6),

1

|G|
∑
g∈G

g · x ∈ X and so AG(x) ∈ X.

Next we show that AG(x) is a G-fixed point and deduce that XG is not empty. For
every g ∈ G, by Exercise 6, we have

g ·AG(x) =g ·
(

1

|G|
∑
g′∈G

g′ · x
)

=
1

|G|
∑
g′∈G

g · (g′ · x)

=
1

|G|
∑
g′∈G

(gg′) · x =
1

|G|
∑
g′∈G

g′ · x = AG(x).

Hence AG(x) ∈ XG. Finally we notice that if x ∈ XG, then AG(x) = x. Therefore
AG ◦AG = AG, which finishes the proof.

Next we see how the mentioned actions on the space of inner products and linear
maps between spaces of two representations together with Lemma 19 help us prove
complete reducibility of every (finite dimensional) representation of a finite group, and
prove Schur’s orthogonality relations.

Lemma 20 (Unitarization). Suppose G is a compact group, and π : G → GLn(C)
is a finite dimensional representation. Then there exists a unitary representation
π′ : G→ Un(C) which is equivalent to π.
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Proof. Consider the affine action of G on P+
n via π, and notice that P+

n is a convex
subset of Mn(C). Hence by Lemma 19, there is aG-fixed point a. This implies that the
inner product 〈·, ·〉a isG-invariant, and soπ is equivalent to a unitary representation.

Lemma 21 (Complete reducibility). SupposeG is a finite group, and π : G→ GL(V )
is a complex representation of G. Then V is a completely reducible CG-module.

We also say that the representation π : G → GL(V ) is a completely reducible
representation if V is a completely reducible CG-module.

Proof. By Lemma 20, we can and will assume that π is a unitary representation. We
proceed by induction on dimV to prove that V is a completely reducible CG-module.
The base of induction is clear. If V does not have any non-trivial CG-module, then
V is a simple CG-module, and there is nothing to prove. Next assume that W is a
non-trivial CG-module. We claim that

W⊥ := {v ∈ V |h∀w ∈W, 〈v, w〉 = 0}

is a CG-submodule. For every g ∈ G, v, w ∈ V , we have

〈π(g)(v), w〉 = 〈v, π(g−1)(w)〉 (3.11)

as π(g) is unitary. Notice that for w ∈ W , π(g−1)(w) ∈ W as W is G-invariant.
Hence by (3.11), we obtain that for every v ∈W⊥ and w ∈W the following holds:

〈π(g)(v), w〉 = 0;

and so π(g)(v) ∈W⊥. This implies that W⊥ is a G-invariant subspace of V . Hence
W⊥ is aCG-submodule of V . Notice that since 〈·, ·〉 is an inner product, V = W⊕W⊥.
Since W and W⊥ are CG-modules of dimension smaller than dimV , by the induction
hypothesis, they are completely reducible. Thus V is completely reducible.

Using Lemma 20, we can and will focus on studying only unitary representations
of a finite group. One of most important unitary representations of a finite group G is
its action on L2(G) given by left translations (or right translations)

λ0 : G→ GL(L2(G)), (λ0(x)(f))(y) := f(x−1y),

and
ρ0 : G→ GL(L2(G)), (ρ0(x)(f))(y) := f(yx).

In fact, for us the study of representations of compact groups is a mean to analyze the
space of (L2-integrable) functions onG. Notice that for a finite groupG, every complex
function on G is in L2(G), and the only reason we emphasize on this perspective is
because we want to remind ourselves of the natural inner product on this space which
is G-invariant (for both left and right translations):

〈f, g〉 :=
1

|G|
∑
x∈G

f(x)g(x).
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Sometimes we work with the counting measure onG, instead of the probability counting
measure; that means we let

〈f, g〉 :=
∑
x∈G

f(x)g(x).

In order to distinguish these spaces, we denote the former with L2̃(G) and the latter
with L2(G).

To every unitary representation π : G→ Un(C), we associate a subspace Hπ of
L2(G). We refer to Hπ as the space of all the matrix coefficients of π. It is defined as
the span of {eij ◦ π| 1 ≤ i, j ≤ n} where eij(x) is the (i, j)-entry of x. Here are some
of the basic properties of the space of matrix coefficients of a unitary representation.

Lemma 22 (Space of matrix coefficients). 1. Suppose π and π′ are two equivalent
representations of G. Then they have the same space of matrix coefficients; that
means Hπ = Hπ′ .

2. Suppose π is a unitary representation. Then for every v, w ∈ Vπ ,

fv,w(x) := 〈π(x)v, w〉 ∈ Hπ.

3. For a representation π, Hπ is a G×G-invariant subspace of L2(G), where the
action of G×G on L2(G) is given by

((x1, x2) · f)(y) := f(x−11 yx2).

4. If π, π1, . . . , πm are a representation of G and Vπ =
∑m
j=1 Vπj , then

Hπ =

m∑
j=1

Hπj .

Proof. Since π and π′ are equivalent, deg π = deg π′ = n for some positive integer n,
and there is g ∈ GLn(C) such that for every x ∈ G,

π2(x) = gπ1(x)g−1. (3.12)

Hence for every 1 ≤ i, j ≤ n, we have

ei,j ◦ π′ =
∑
l,k

ei,l(g)ek,j(g
−1)el,k ◦ π,

and so Hπ′ ⊆ Hπ . Similarly we have that Hπ ⊆ Hπ′ , which implies the first part.
To show the second part, we notice that

fv,w(x) =
∑
i,j

vjwi〈π(x)(ej), ei〉 =
∑
i,j

vjwieij ◦ π(x)
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for every v, w ∈ Vπ . This implies that

fv,w =
∑
i,j

vjwi eij ◦ π ∈ Hπ.

The third part is obtained from the following equation which implies that the set
{fv,w}v,w∈Vπ is invariant under the action of G×G:

((x1, x2) · fv,w)(y) =fv,w(x−11 yx2)

=〈π(x−11 yx2)v, w〉
=〈π(y)(π(x2)v), π(x1)(w)〉 = fπ(x2)(v),π(x1)(w)(y).

Notice that since fej ,ei = eij ◦ π, the span of fv,w’s is Hπ .
The last part is left as an exercise.

The main algebraic lemma which helps us make use of an irreducibility assumption
is the following which is known as Schur’s lemma.

Lemma 23 (Schur’s lemma). Suppose G is a finite group.

1. If π1 and π2 are two irreducible representations of G and f ∈ I(π1, π2) is an
intertwining operator, then either f = 0 or f is a bijection and π1 and π2 are
equivalent. In particular, if π1 and π2 are not equivalent, I(π1, π2) = {0}.

2. Suppose π is an irreducible representation of G. Then the set I(π, π) of inter-
twining operators between π and itself consists of scalars; that means

I(π, π) = {c idVπ | c ∈ C}.

Proof. Since f is an intertwining operator, ker f and im f are G-invariant. Because
both π1 and π2 are irreducible, we deduce that ker f and im f are trivial submodules
of Vπ1 and Vπ2 , respectively. If ker f = Vπ1 or im f = {0}, then f = 0. Otherwise,
ker f = {0} and im f = Vπ2

. The former implies that f is injective, and latter implies
that f is surjective. Hence f is a bijection if it is not zero. Existence of a bijective
intertwining operator implies that π1 and π2 are equivalent. The first part follows.

Suppose f ∈ I(π, π), and let c ∈ C be an eigenvalue of f . Then f − c idVπ is
a non-bijective element of I(π, π). Hence by the first part, it is zero. This means
f = c idVπ , which finishes the proof.

Using Schur’s lemma (Lemma 23) and the averaging trick (see Lemma 19), we
prove Schur’s orthogonality relations which play a central role in the Fourier analysis
on finite groups.

Theorem 24 (Schur’s orthogonality relations). Suppose G is a finite group.

1. If π1 and π2 are two non-equivalent unitary irreducible representations of G,
then Hπ1

is perpendicular to Hπ2
.
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2. If π is a unitary irreducible representation ofG, then for every a ∈ Hom(Vπ, Vπ)

1

|G|
∑
x∈G

π(x) ◦ a ◦ π(x)−1 =
tr a

deg π
idVπ .

3. If π is a unitary irreducible representation of G, then {
√

deg π eij ◦ π}i,j is an
orthonormal basis of Hπ ⊆ L2̃(G).

Proof. By Lemma 19, for every a ∈ Hom(Vπ1 , Vπ2),

1

|G|
∑
g∈G

π2(x) ◦ a ◦ π1(x)−1 ∈ I(π1, π2).

By Schur’s lemma, I(π1, π2) = {0}. Hence

1

|G|
∑
g∈G

π2(x) ◦ a ◦ π1(x)−1 = 0 (3.13)

for every a ∈ Hom(Vπ1
, Vπ2

). Since π1 is unitary, π1(x)−1 = π1(x)∗; and so by
(3.13), we obtain

0 =
1

|G|
∑
x∈G

ei,j(π2(x) ◦ a ◦ π1(x)−1)

=
1

|G|
∑
x∈G

∑
k,l

ei,k(π2(x))ek,l(a)el,j(π1(x)−1)

=
∑
k,l

ek,l(a)
1

|G|
∑
x∈G

ei,k ◦ π2(x)ej,l ◦ π1(x)

=
∑
k,l

ek,l(a)〈ej,l ◦ π1, ei,k ◦ π2〉 (3.14)

Applying (3.14) for a with 1 in its (k, l)-entry and 0 everywhere else, we obtain that

ej,l ◦ π1 ⊥ ei,k ◦ π2

for every i, j, k, and l. This implies the first part.
For the second part, we again use Lemma 19 and Schur’s lemma to obtain that

1

|G|
∑
x∈G

π(x) ◦ a ◦ π(x)−1 = c idVπ (3.15)

for some c ∈ C. Taking the trace of both sides of (3.15), we deduce that

tr a = cdeg π.

Hence c = tr a
deg π , and so by (3.15), the second part follows.
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Using the second part, similar to a computation done in (3.13), we obtain

tr a

deg π
[i = j] =

∑
k,l

ek,l(a)〈ej,l ◦ π1, ei,k ◦ π2〉 (3.16)

for every i, j. Applying (3.16) for a with 1 in its (k, l)-entry and 0 everywhere else, we
obtain that

[k = l][i = j]

deg π
= 〈ej,l ◦ π1, ei,k ◦ π2〉.

The third part follows, which finishes the proof.

One of the implications of the third part of Theorem 24 is that dimHπ = (deg π)2

for every unitary irreducible representation π of G. Next we describe the CG-module
structure of Hπ .

Lemma 25. Suppose G is a finite group and π is a unitary irreducible representation
of G. Then Hπ ' V deg π

π as a CG-module where Hπ is the space of matrix coefficients
of π and is considered as a CG-module via the right-translations action.

Proof. Suppose B := {e1, . . . , en} is an orthonormal basis of Vπ . Using the basis B,
identify Vπ with Cn and π with a group homomorphism from G to Un(C).

Now notice that for every 1 ≤ i, j ≤ n and x ∈ G, we have

(ρ0(x)(ei,j ◦ π))(y) = ei,j ◦ π(yx) =

n∑
k=1

ei,k ◦ π(y)ek,j ◦ π(x).

Hence

ρ0(x)(ei,j ◦ π) =

n∑
k=1

ek,j ◦ π(x) ei,k ◦ π. (3.17)

Equation 3.17 implies that

Hπ,i := span{ei,j ◦ π| 1 ≤ i ≤ n}

is a G-invariant subspace of Hπ (under the right-translations action). Moreover by
the third part of Theorem 24, we have that {ei,j ◦ π}i is an orthogonal basis of Hπ,j ,
Hπ,i’s are pairwise orthogonal to each other, and Hπ = Hπ,1 ⊕ · · · ⊕Hπ,n.

We also notice that for every j

π(x)(ej) =

n∑
k=1

ek,j ◦ π(x) ek. (3.18)

And so Tix : Vπ → Hπ,i, Ti(ej) := ei,j ◦ π is a CG-module isomorphism. Alto-
gether, we obtain that

Hπ = Hπ,1 ⊕ · · · ⊕Hπ,n ' Vπ ⊕ · · · ⊕ Vπ︸ ︷︷ ︸
n times

,

which finishes the proof.
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For two unitary representations π and ρ of G, we say π is a subrepresentation of ρ
if there is an embedding φ : Vπ → Vρ such that for every v, w ∈ Vπ

〈φ(v), φ(w)〉 = 〈v, w〉

where the former inner product is taken in Vρ and the latter in Vπ , and for every x ∈ G
and v ∈ Vπ ,

φ(π(x)(v)) = ρ(x)(φ(v)).

If π is a subrepresentation of ρ, we write π ≤ ρ.

Corollary 26. Suppose G is a finite group. Suppose π1, . . . , πm are all the non-
equivalent irreducible subrepresentations of the regular representation λ0. Then

L2(G) = Hπ1
⊕ · · · ⊕Hπm .

Proof. For f ∈ L2(G), let Mf be the submodule of L2(G) generated by f . Let
e1, . . . , ek be an orthonormal basis of Mf . Let

fij(x) := 〈λ0(x)ei, ej〉.

Since Mf is G-invariant, for every x, λ0(x)ei is in the span of ej’s, and so

λ0(x)ei =

m∑
j=1

〈ej , λ0(x)ei〉ej =

m∑
j=1

〈λ0(x−1)ej , ei〉ej =

m∑
j=1

fji(x
−1)ej . (3.19)

Evaluating both sides of (3.19) at 1, we obtain

λ0(x)ei(1) =

m∑
j=1

fji(x
−1)ej(1),

and so

ei(x
−1) =

m∑
j=1

ej(1)fji(x
−1) ∈ HMf

.

Hence f ∈ HMf
. Therefore by the last part of Lemma 25, we deduce that

f ∈
m∑
j=1

Hπj .

By the first part of Theorem 24 (Schur’s orthogonality relations), we have thatHπj ’s are
pairwise orthogonal to each other, and for every unitary irreducible subrepresentation
π of λ0, Hπ = Hπj for some j. Altogether, we conclude that

L2(G) = Hπ1
⊕ · · · ⊕Hπm .

This finishes the proof.
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For a finite group G, let Ĝ be the set of all the non-equivalent irreducible subrepre-
sentations of λ0.

Corollary 27. SupposeG is a finite group and π is a unitary irreducible representation
of G. Then π is equivalent to an element of Ĝ.

Proof. If π is not equivalent to elements of Ĝ, then by the first part of Theorem 24,

Hπ ⊥
∑
π′∈Ĝ

Hπ′

which contradicts Corollary 26.

Theorem 28 (Fourier analysis: an orthonormal basis). Suppose G is a finite group,
and Ĝ is the set of all the non-equivalent irreducible subrepresentations of the regular
representation λ0. Then

{
√

deg π ei,j ◦ π| π ∈ Ĝ, 1 ≤ i, j ≤ deg π}

is an orthonormal basis of L2̃(G).

Proof. This is an immediate consequence of Corollary 26 and the third part of Theo-
rem 24.

By Theorem 28, we have that for every f ∈ L2(G)

f =
∑
π∈Ĝ

deg π
∑
i,j

〈ei,j ◦ π, f〉 ei,j ◦ π, (3.20)

and so we are interested in

〈ei,j ◦ π, f〉 =

∫
G

ei,j ◦ π(x)f(x)dx =

∫
f(x)ej,i(π(x)∗)dx. (3.21)

This brings us to the definition of the Fourier inverse of a function in L2(G) where G
is a finite group. The Fourier inverse f̂ of a function f ∈ L2(G) is a function on Ĝ.
For every π ∈ Ĝ, f̂(π) is an element of Hom(Vπ, Vπ) that is the average of π(x)∗’s
with the weights given by f ; that means

f̂(π) :=

∫
G

f(x)π(x)∗dx.

By (3.20) and (3.21), the following result follows.

Theorem 29 (Fourier expansion). In the setting of Theorem 28, for every f ∈ L2(G),
we have

f =
∑
π∈Ĝ

deg π
∑
i,j

ej,i(f̂(π)) ei,j ◦ π;

and so for every x ∈ G,

f(x) =
∑
π∈Ĝ

deg π tr(f̂(π)π(x)).
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In the next proposition, we see the basic properties of the Fourier inversion with
respect to the regular representations and convolution.

Proposition 30 (Basic properties of Fourier inverse). SupposeG is a finite group. Then
for every f, g ∈ L2(G), π ∈ Ĝ, and x ∈ G, we have

λ̂0(x)f(π) = f̂(π)π(x)∗, ρ̂0(x)f(π) = π(x)f̂(π), and f̂ ∗ g(π) = |G| ĝ(π)f̂(π).

Proof. All the statements are easy to show. Here we only discuss the last one and leave
the rest as an exercise. By the definition of convolution and Fourier inverse, we have

f̂ ∗ g(π) =

∫
G

(f ∗ g)(x)π(x)∗dx =

∫
G

∑
y∈G

f(y)g(y−1x)π(x)∗dx

=
∑
y∈G

f(y)(

∫
G

λ0(y)(g)(x)π(x)∗dx) =
∑
y∈G

f(y)λ̂0(y)g(π)

=|G|
∫
G

f(y)ĝ(π)π(y)∗dy = |G| ĝ(π)f̂(π).

It is worth to point out that if convolution is defined using the probability counting
measure instead of the counting measure, then the Fourier inverse of the convolution of
f and g is simply the product of the Fourier inverse of g and the Fourier inverse of f .

We finish our discussion of Fourier analysis on finite groups by proving the Plancherel
Theorem.

Theorem 31 (Plancherel’s theorem). In the setting of Theorem 28, for every f ∈ L2̃(G),
we have

‖f‖2
2̃

=
∑
π∈Ĝ

deg π ‖f̂(π)‖2HS,

where ‖a‖2HS =
∑
i,j |aij |2 for a ∈ Mn(C).

Proof. By Theorems 28 and Theorem 29, we have

‖f‖2
2̃

=
∑
π∈Ĝ

deg π
∑
i,j

|ej,i(f̂(π))|2 =
∑
π∈Ĝ

deg π ‖f̂(π)‖2HS.

This finishes the proof.

Notice that by Theorem 31 in L2(G), we have

‖f‖22 = |G|
∑
π∈Ĝ

deg π ‖f̂(π)‖2HS.
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3.3 Quasi-randomness, a mixing and a product theorem

As we have seen in the example of equidistribution of irrational rotations, we can
use the Fourier inverse of a smooth function on the circle R/Z and approximate it with
a finite sum of the form

∑
|n|≤N f̂(n)en. Notice that as x ranges in R/Z once, en(x)

goes around the circle n times. The real (or the imaginary) part of en(x) oscillates
with frequency n. In other words, by approximating based on the Fourier inverse of
a smooth function, we ignore high frequency terms. This idea has been heavily used
in data compression algorithms. It is not surprising that such algorithms started with
audio data compression as we can only hear sounds at certain frequencies. Here we
employ the same philosophy to study random-walks on (certain) finite groups.

Notice that if f is a more smooth function onR/Z, then it should have less correlation
with high frequency oscillations. This means the tail of the Fourier expansion should
be quite small. The extreme case is when f is constant; in this case, only the first term
is non-zero. For a non-abelian finite group G, we can use the degree of a representation
instead of the frequency in order to measure its complexity. We take a threshold D, and
collect the high frequency terms in the Plancherel formula of the L2-norm of f and call
it H(f ;D); that means

H(f ;D) :=
∑

π∈Ĝ,deg π≥D

deg π ‖f̂(π)‖2HS.

The smaller H(f ;D) (for a smaller threshold D) the smoother the function f .
The other general concept is that the convolution of two functions is smoother

than the original functions. It is worth pointing out that the same principle is used in
softwares that process photos in order to make the pictures more smooth: we essentially
consider the convolution of the original function with another function which is called
a filter. In order to find out, how much more f ∗ g is smooth compared to f and g, we
look at H(f ∗ g;D).

Theorem 32 (Gowers’s mixing theorem: version 1). Suppose G is a finite group and
D is a positive number. Then for every f, g ∈ L2(G),

H(f ∗ g;D) ≤ |G|
2

D
H(f ;D)H(g;D).

Proof. We haveH(f ∗g;D) =
∑
π∈Ĝ,deg π≥D deg π ‖f̂ ∗ g(π)‖2HS. And so by Propo-

sition 30, we obtain

H(f ∗ g;D) = |G|2
∑

π∈Ĝ,deg π≥D

deg π ‖ĝ(π)f̂(π)‖2HS.

Since ‖AB‖HS ≤ ‖A‖HS‖B‖HS, we deduce that

H(f ∗ g;D) ≤ |G|2
∑

π∈Ĝ,deg π≥D

deg π ‖f̂(π)‖2HS‖ĝ(π)‖2HS. (3.22)
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Notice that the right hand side of the inequality given in (3.22) is at most

|G|2

D

( ∑
π∈Ĝ,deg π≥D

deg π ‖f̂(π)‖2HS

)
︸ ︷︷ ︸

H(f ;D)

( ∑
π∈Ĝ,deg π≥D

deg π ‖ĝ(π)‖2HS

)
︸ ︷︷ ︸

H(g;D)

,

which finishes the proof.

It is worth mentioning that the factor |G|2 is in some sense an unnatural factor which
appears only because we defined the convolution of two functions using the counting
measure instead of the probability counting measure; that means if we define f ∗ g(x)
as
∫
G
f(y)g(y−1x)dy instead of our convention f ∗ g(x) :=

∑
y∈G f(y)g(y−1x), the

factor |G|2 disappears.
Theorem 32 is particularly strong when D is chosen to be

DG := min{deg π| π ∈ Ĝ \ {1}}, (3.23)

where 1 denotes the trivial representation of G, and DG is large.

Theorem 33 (Gowers’s mixing theorem: version 2). Suppose G is a finite group and
DG is as in (3.23). Then for every f ∈ L2(G)◦ and g ∈ L2(G), we have

‖f ∗ g‖2 ≤

√
|G|
DG
‖f‖2‖g‖2.

Proof. Notice that L2(G)◦ is an ideal of (L1(G),+, ∗); that means if f ∈ L2(G)◦ and
g ∈ L2(G), then f ∗ g ∈ L2(G)◦. Next, we mention that for a function h ∈ L2(G)◦,

ĥ(1) =

∫
G

h(x)dx = 0;

and so by the Plancherel theorem

‖h‖22 = |G| H(h;DG).

Hence by Theorem 32, we obtain

‖f ∗ g‖22 =|G|H(f ∗ g;DG) ≤ |G|
3

DG
H(f ;DG)H(g;DG)

≤ |G|
DG
‖f‖22‖g‖22,

which finishes the proof.

Similar to the case of the equidistribution of irrational rotations, we are interested
in a pointwise estimate instead of an L2-estimate.
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Lemma 34. Suppose G is a finite group, and f, g ∈ L2(G). Then for every x ∈ G, we
have

f ∗ g(x) = 〈λ0(x)ǧ, f〉,

where ǧ(x) := g(x−1), and

‖f ∗ g‖∞ ≤ ‖f‖2‖g‖2.

Proof. For every x ∈ G,

f ∗ g(x) =
∑
y∈G

f(y)g(y−1x) =
∑
y∈G

f(y)λ0(x)(ǧ)(y) = 〈λ0(x)ǧ, f〉.

This together with the Cauchy-Schwarz inequality implies that

|f ∗ g(x)| = |〈λ0(x)ǧ, f〉| ≤ ‖λ0(x)ǧ‖2‖f‖2 = ‖f‖2‖g‖2,

which finishes the proof.

Using induction, Theorem 33, and Lemma 34, we obtain the following result.

Theorem 35 (Gowers’s mixing theorem: version 3). Suppose G is a finite group and
f ∈ L2(G)◦, g1, . . . , gn ∈ L2(G). Then for n ≥ 2

‖f ∗ g1 ∗ · · · ∗ gn−1‖2 ≤
(√
|G|
DG

)n−1
‖f‖2

n−1∏
i=1

‖gi‖2, (3.24)

‖f ∗ g1 ∗ · · · ∗ gn‖∞ ≤
(√
|G|
DG

)n−1
‖f‖2

n−1∏
i=1

‖gi‖2, (3.25)

and if µ1, . . . , µn are probability measures on G, then

‖µ1 ∗ · · · ∗ µn −PG‖∞ ≤
(√
|G|
DG

)n−2 n∏
i=1

‖µi‖2, (3.26)

where PG is the probability counting measure on G.

Proof. We proceed by induction on n to prove (3.24). The base case of n = 2 follows
from Theorem 33. Let h := f ∗ g1 ∗ · · · ∗ gn−2. Then h ∈ L2(G)◦, and so by
Theorem 33, we deduce that

‖h ∗ fn−1‖2 ≤

√
|G|
DG
‖h‖2‖fn−1‖2. (3.27)

By the induction hypothesis, we have

‖h‖2 ≤
(√
|G|
DG

)n−2
‖f‖2

n−2∏
i=1

‖fi‖2. (3.28)
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By (3.27) and (3.28), (3.24) follows.
The inequality (3.25) follows from (3.24) and Lemma 34.
To prove the last inequality, it is enough to observe that µ1 −PG ∈ L2(G)◦ and

µi ∗PG = PG. These equalities imply the following

µ1 ∗ · · · ∗ µn −PG = (µ1 −PG) ∗ µ2 ∗ · · · ∗ µn.

Hence by (3.25), we obtain

‖µ1 ∗ · · · ∗ µn −PG‖∞ ≤
(√
|G|
DG

)n−2 n∏
i=1

‖µi‖2.

The following product theorem is an important corollary of Theorem 35.

Theorem 36. Suppose G is a finite group and DG := min{deg π| π ∈ Ĝ \ {1}}.
Suppose A1, . . . , An are subsets of G such that

n∏
i=1

|Ai| >
|G|n

DG
.

Then A1 · · ·An = G.

Proof. Letµi := PAi be the probability counting measure onAi. Then by Theorem 35,
we obtain that for every x ∈ G

(PA1 ∗ · · · ∗PAn)(x) ≥PG(x)− ‖PA1 ∗ · · · ∗PAn −PG‖∞

≥ 1

|G|
−
(√
|G|
DG

)n−2 n∏
i=1

‖PAi‖2

=
1

|G|
−
(√
|G|
DG

)n−2 n∏
i=1

1√
|Ai|

=
1

|G|
−

√
|G|n−2

DG

∏n
i=1 |Ai|

> 0.

This means every x ∈ G can be written as a product of elements of Ai’s. This finishes
the proof.

The mixing theorems and the product theorems are effective when DG is large. We
say G is c-quasi-random if

DG ≥ |G|c;

this means deg π ≥ |G|c for every π ∈ Ĝ \ {1}. We finish this section by proving that
SLn(Fp)’s are cn-quasi-random for some cn which only depends on n.
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Theorem 37. Suppose p is a prime number, and G := SL2(Fp). Then DG ≥ p−1
2 ,

and G is 1/4-quasi-random if p ≥ 7.

Proof. The usual technique of studying representations of a linear group is starting
with its restriction to the Borel subgroup. In the case of SL2(Fp), this means upper

triangular matrices. Notice that since SL2(Fp) is generated by a :=

(
1 1
0 1

)
and

b :=

(
1 0
1 1

)
and a and b are conjugate of each other, neither a nor b can be in the

kernel of a non-trivial representation π. Hence π(a) is an element of order p in Ud(C)
where d := deg π. Therefore after conjugation, if needed, we can and will assume that
π(a) is a diagonal matrix diag(ζ1, . . . , ζd) and ζi’s are p-th roots of unity and ζ1 6= 1.

So far we understood, the restriction of π to the unipotent radical of the Borel
subgroup. Next, we investigate the diagonal matrices in SL2(Fp), and the key point is
that the diagonal matrices normalize the unipotent radical. For every α ∈ F×p , we have

π

(
α 0
0 α−1

)
π

(
1 1
0 1

)
π

(
α−1 0

0 α

)
= π

(
1 α2

0 1

)
= π(a)α

2

.

Hence π(a)α
2 is a conjugate of π(a). Hence ζα2

1 is an eigenvalue of π(a) for every
α ∈ F×p . Since the multiplicative order of ζ1 is p and there are p−1

2 perfect residues in
F×p , we deduce that π(a) has at least p−12 distinct eigenvalues. Hence d ≥ p−1

2 , which
implies that DG ≥ p−1

2 .
The last part follows from the fact that |SL2(Fp)| = p(p− 1)(p+ 1) and

p− 1

2
≥ (p(p− 1)(p+ 1))1/4

for p ≥ 7.

3.4 Exercises

1. (Uniform convergence of Fourier series) Suppose f : R/Z → C is a smooth
function. Prove the uniform convergence of the Fourier series of f ; that means
for every ε > 0 there is Nε such that for every x ∈ R/Z, we have

|f(x)−
∑
|n|≤Nε

f̂(n)en(x)| ≤ ε

(Hint. Use the same scheme of argument as in the proof of Theorem 17. For
ε > 0, choose Mε such that

‖f −
∑
|n|≤Mε

f̂(n)en‖2 ≤ ε.

Let {ψε} be a family of smooth test functions approximating the Dirac mass at
x0. Choose δ small enough so that

|en(x)− en(x0)| ≤ ε

Mε max{|f̂(n)|| |n| ≤Mε}



3.4. EXERCISES 45

for every x in the δ-neighborhood of x0 and |n| ≤Mε. Then show that for small
enough δ (depending on ε and f ), we have

|f(x0)− 〈f, ψδ〉| ≤ ε, |〈f, ψδ〉 −
∑
|n|≤Mε

f̂(n)〈en, ψδ〉| ≤ ε,

and ∑
|n|≤Mε

|f̂(n)||〈en, ψδ〉 − en(x0)| ≤ ε.

Finish the proof.)

2. (Weyl’s equidistribution criterion) A sequence {an}∞n=1 of points in R/Z is
equidistributed if and only if for every non-zero integer m, we have the following
exponential sum cancellation

lim
N→∞

∑N
n=1 em(an)

N
= 0. (3.29)

(Hint. Follow the same scheme of argument as in the proof of Theorem 17. For
every smooth function f , let

TN (f)(t) :=

∑N
n=1 f(t+ an)

N
.

Notice that (3.29) is equivalent to saying limN→∞ TN (em)(0) = 0 and equidis-
tribution is equivalent to saying limN→∞ TN (f)(0) = 〈f,1〉. Use the uniform
convergence of the Fourier series to show the existence of Nε such that for every
x,

|f(x)−
∑
|m|≤Nε

f̂(m)em(x)| ≤ ε.

Deduce that

|f(x+ an)−
∑
|m|≤Nε

em(an)f̂(m)em(x)| ≤ ε,

and so ∣∣∣∣TN (f)(x)−
∑
|m|≤Nε

(∑
|n|≤N em(an)

N

)
f̂(m)em(x)

∣∣∣∣ ≤ ε.
Choosing N large enough, deduce that

|TN (f)− f̂(0)| ≤ 2ε,

and complete the proof. )
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3. (The van der Corput trick) Suppose {an}∞n=1 is a sequence of points inR/Z. Sup-
pose for every positive integer h, the sequence {an+h−an}∞n=1 is equidistributed.
Prove that {an}∞n=1 is equidistributed.
(Hint. By Weyl’s equidistribution criterion, it is enough to prove that

lim
N→∞

∑N
n=1 em(an)

N
= 0

for every non-zero integer m. We pick an intermediate range H , and till that
range, we use the trivial bound. To go beyond the intermediate range, we use the
exponential sum cancellation given by the assumption.
For every 1 ≤ h ≤ H , we have∣∣∣∣∑N

n=1 em(an)

N
−
∑N
n=1 em(an+h)

N

∣∣∣∣ = O

(
H

N

)
.

Averaging over 1 ≤ h ≤ H , deduce that∣∣∣∣∑N
n=1 em(an)

N

∣∣∣∣ =

∣∣∣∣ 1

N

N∑
n=1

(
1

H

H∑
h=1

em(an+h)

)∣∣∣∣+O

(
H

N

)
.

Using the Cauchy-Schwarz inequality, obtain

∣∣∣∣∑N
n=1 em(an)

N

∣∣∣∣ ≤
√√√√ 1

N

N∑
n=1

∣∣∣∣ 1

H

H∑
h=1

em(an+h)

∣∣∣∣2 +O

(
H

N

)
.

Notice that

1

N

N∑
n=1

∣∣∣∣ 1

H

H∑
h=1

em(an+h)

∣∣∣∣2 =
1

H2

∑
1≤h1,h2≤H

(
1

N

N∑
n=1

em(an+h1
− an+h2

)

)

=
1

H2

(
1+

∑
1≤h1 6=h2≤H

(
1

N

N∑
n=1

em(an+h1
− an+h2

)

))
.

For a fixed H , let N go to infinity and use the assumption, and deduce that∣∣∣∣∑N
n=1 em(an)

N

∣∣∣∣ ≤ 1

H

for every H . Finish the proof.)

4. (Weyl’s theorem) Suppose p(x) =
∑n
i=0 aix

i ∈ R[x], n > 0, and there exists
i0 > 0 such that ai0 6∈ Q. Prove that

{p(n) + Z}∞n=1

is equidistributed.
(Hint. Use the van der Corput trick and proceed by induction on the degree of p.)
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5. (Space of inner products) Let P+
n be the set of n-by-n positive definite Hermitian

matrices. For x ∈ GLn(C) and a ∈ P+
n , let x · a := x∗ax.

a) Prove that P+
n is a convex set.

b) Prove that · defines an affine group action.
c) Prove that GLn(C) acts transitively on P+

n .
d) Prove that ifG is a compact subgroup of GLn(C), then there is x ∈ GLn(C)

such that G ⊆ xUn(C)x−1.
e) Prove that the set of fixed points of Un(C) under the action induced by · is
{cI| c ∈ C \ {0}}.

f) Prove that Un(C) is a maximal compact subgroup of GLn(C) and every
maximal compact subgroup of GLn(C) is a conjugate of Un(C).

6. (Weighted center of mass) Suppose X ⊆ Cn is a convex set and G acts on X
by affine transformations, then for every x1, . . . , xn ∈ X , non-negative numbers
p1, . . . , pn that add up to 1, and g ∈ G, we have that

m∑
i=1

pixi ∈ X and g · (
n∑
i=1

pixi) =

n∑
i=1

pi g · xi,

(Hint. Use induction on n.)

7. Suppose G is a finite group, π, π1, . . . , πm are finite dimensional unitary repre-
sentations of G. Suppose Vπ =

∑m
j=1 Vπj . Prove that

Hπ =

m∑
j=1

Hπj ,

where Hπ and Hπj are spaces of matrix coefficients.

8. (Space of matrix coefficients: G×G-representation and Wedderburn) Suppose
G is a finite group and π is a degree n unitary irreducible representation of G.
Then the following statements hold.

a) The space Hπ of matrix coefficients of π is invariant under the left-right
translations action, and Hπ ' Mn(C) as a C(G ×G)-module where for
every (x1, x2) ∈ G and a ∈ Mn(C),

(x1, x2) · a := π(x2) a π(x1)−1.

b) Let C[π(G)] ⊆ Mn(C) be the C-span of π(G). Prove that

C[π(G)] = Mn(C).

c) Prove that Hπ is an irreducible G×G-representation.
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d) Let Ĝ := {π1, . . . , πm} be a set of unitary irreducible representations of
G which are pairwise non-equivalent and every unitary irreducible repre-
sentation is equivalent to one of the elements of Ĝ. Prove that

L2(G) = Hπ1 ⊕ · · · ⊕Hπm .

e) The space Hπ is an ideal of the group ring CG, after identifying CG with
(L1(G),+, ∗).

f) Suppose Ĝ is as in part (8d). Prove that CG '
∏
π∈Ĝ Mdeg π(C) as a ring.

(Hint. For part (a), notice that

((x1, x2) · ei,j ◦ π)(y) = ei,j(π(x−11 yx2));

and so

(x1, x2) · (ei,j ◦ π) =
∑
k,l

ei,k(π(x1)−1)el,j(π(x2)) ek,l ◦ π.

Let T : Hπ → Mn(C) be a linear map such that T (ei,j ◦ π) := Ej,i where Ej,i
is the n-by-n matrix that has 1 in its (j, i)-entry and 0 everywhere else. Then

T

(
(x1, x2) · (

∑
i,j

aj,i ei,j ◦ π)

)
=
∑
i,j

aj,i
∑
k,l

ei,k(π(x1)−1)el,j(π(x2)) El,k

=
∑
k,l

(∑
i,j

el,j(π(x2))aj,iei,k(π(x1)−1)

)
El,k

=
∑
k,l

el,k(π(x2)aπ(x1)−1)El,k

=π(x2)aπ(x1)−1.

For part (b), suppose to the contrary thatC[π(G)] is a proper subspace and deduce
that there exists a := (aij) ∈ Mn(C) \ {0} such that tr(a∗C[π(G)]) = 0. Let
fa :=

∑
i,j ajiei,j ◦ π ∈ Hπ. Show that fa(x) = 0 for every x ∈ G. Deduce

that a = 0 which is a contradiction.
For part (d), use Corollary 26 and Corollary 27.
For part (e), use the following equation

(g ∗ fv,w)(x) =
∑
y

g(y)〈π(y−1x)v, w〉

=

〈
π(x)v,

∑
y

g(y)π(y)w

〉
= fv,

∑
y g(y)π(y)(w)(x).)

9. Suppose G is a finite group. Then for every f, g ∈ L2(G), π ∈ Ĝ, and x ∈ G,
we have

λ̂0(x)f(π) = f̂(π)π(x)∗, and ρ̂0(x)f(π) = π(x)f̂(π).
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10. (Finite simple groups of Lie type are quasi-random) Suppose p is a prime number
and q = pn for some positive integer n.

a) Prove that DSL2(Fq) ≥
q−1
2 .

b) Suppose H is a subgroup of G and the normal closure of H is G; that
means the smallest normal subgroup of G which contains H is G. Prove
that DG ≥ DH .

c) Prove that DSLn(Fq) ≥
q−1
2 , and deduce that SLn(Fq) is cn-quasi-random

for a positive number cn which only depends on n.

(Hint. Similar to the case of q = p, start with the restriction of π to the subgroup
of unipotent upper triangular matrices. Argue why you can assume that

π

(
1 a
0 1

)
= diag(φ1(a), . . . , φd(a))

where φj : Fq → {ζ ∈ C| ζp = 1} is a group homomorphism for every j. Using
conjugation by diagonal matrices in SL2(Fq), argue that for every, b ∈ F×q and
a ∈ Fp,

(φ1(b2a), . . . , φd(b
2a))

is a permutation of
(φ1(a), . . . , φd(a)).

This implies that

{b−2 · φ1| b ∈ F×q } ⊆ {φ1, . . . , φd}.

as functions on Fq . Argue that if φ1 is not trivial, then b−2 · φ1 = φ1 if and only
if b−2 = 1. Deduce the first part.
For the last part, show that SLn(Fq) is generated by conjugates of a copy of
SL2(Fq). Using this idea one can show that apart from Suzuki groups every
finite simple group of Lie type of rank r is c(r)-quasi-random for some positive
number c(r) which only depends on r.
This bound is not the optimal bound. The optimal bound is found by Landazuri
and Seitz.)
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