Math 10B. Lecture Examples.

Section 10.1. Taylor polynomials ${ }^{\dagger}$

Example 1 Find the first-, second-, and third-degree Taylor polynomial approximations of $y=\ln x$, centered at $x=1$.

$$
\text { Answer: } P_{1}(x)=x-1 \bullet P_{2}(x)=(x-1)-\frac{1}{2}(x-1)^{2} \bullet P_{3}(x)=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}
$$ Figures A1a, A1b and A1c show $y=\ln x$ (the heavy curve) and the Taylor polynomials (the finer curves).

Figure A1a

$P_{2}(x)=(x-1)-\frac{1}{2}(x-1)^{2}$
Figure A1b

$$
\begin{aligned}
P_{3}= & (x-1)-\frac{1}{2}(x-1)^{2} \\
& +\frac{1}{3}(x-1)^{3}
\end{aligned}
$$

Figure A1c

Example 2 (a) Find the fourth-degree Taylor Polynomial approximation $P_{4}(x)$ of $f(x)=e^{x}$ centered at $x=0$. (b) How accurately does the polynomial $P_{4}(x)$ from part (a) approximate $9+e^{x}$ at $x=0.1$ and $x=4$?
Answer: (a) $P_{4}(x)=10+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4} \bullet \quad$ (The graphs of $y=9+e^{x}$ and $y=P_{4}(x)$ are shown in Figure A2.) (b) $\left|\left(9+e^{x}\right)-P_{4}(x)\right| \doteq 8.47 \times 10^{-8}$ at $x=0.1$ and $\doteq 20.26$ at $x=4$

Figure A2

[^0]Example 3 (a) Find the second-degree Taylor polynomial approximation $P_{2}(x)$ of $f(x)=x^{2}$ centered at $x=0$. (a) Show that in this case $P_{2}(x)=f(x)$.
Answer: (a) $P_{2}(x)=1+2(x-1)+(x-1)^{2}$ (b) $1+2(x-1)+(x-1)^{2}=1+2 x-2+x^{2}-2 x+1=x^{2}$

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ a ashenk/ $\ddagger \ddagger$
Section 10.6: Examples 1-3, 4a

[^1]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 10.1 of Calculus by Hughes-Hallett et al

[^1]: \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

