Math 10B. Lecture Examples.

Section 10.1. Taylor polynomials^{\dagger}

Example 1 Find the first-, second-, and third-degree Taylor polynomial approximations of $y = \ln x$, centered at x = 1.

Answer: $P_1(x) = x - 1 \bullet P_2(x) = (x - 1) - \frac{1}{2}(x - 1)^2 \bullet P_3(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 \bullet$ Figures A1a, A1b and A1c show $y = \ln x$ (the heavy curve) and the Taylor polynomials (the finer curves).

Example 2 (a) Find the fourth-degree Taylor Polynomial approximation $P_4(x)$ of $f(x) = e^x$ centered at x = 0. (b) How accurately does the polynomial $P_4(x)$ from part (a) approximate $9 + e^x$ at x = 0.1 and x = 4?

Answer: (a) $P_4(x) = 10 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 \bullet$ (The graphs of $y = 9 + e^x$ and $y = P_4(x)$ are shown in Figure A2.) (b) $|(9 + e^x) - P_4(x)| \doteq 8.47 \times 10^{-8}$ at x = 0.1 and $\doteq 20.26$ at x = 4

Figure A2

 $^{^\}dagger {\rm Lecture}$ notes to accompany Section 10.1 of Calculus by Hughes-Hallett et al

Example 3 (a) Find the second-degree Taylor polynomial approximation $P_2(x)$ of $f(x) = x^2$ centered at x = 0. (a) Show that in this case $P_2(x) = f(x)$. **Answer: (a)** $P_2(x) = 1 + 2(x-1) + (x-1)^2$ (b) $1 + 2(x-1) + (x-1)^2 = 1 + 2x - 2 + x^2 - 2x + 1 = x^2$

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http://www.math.ucsd.edu/~ashenk/:[‡] Section 10.6: Examples 1–3, 4a

 $^{^{\}ddagger}$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.