Math 10B. Lecture Examples.

Section 11.2. Slope fields ${ }^{\dagger}$

Example $1 \quad$ (a) Draw the slope lines for the differential equation $\frac{d y}{d x}=\frac{1}{2}(x-y)$ at the twenty points with coordinates $x=0,1,2,3,4$ and $y=0,1,2,3$ in Figure 1. (b) Describe the patterns of the slope lines and explain how they are determined by the differential equation.

FIGURE 1

Answer: (a) Figure A1 (b) One description and explanation: the slope lines are horizontal on the line $y=x$ where $\frac{1}{2}(x-y)$ is zero, point up to the right under the line $y=x$ where $y<x$ and $\frac{1}{2}(x-y)$ is positive, point down to the right above the line $y=x$ where $y>x$ and $\frac{1}{2}(x-y)$ is negative, and become steeper as they move away from the line $y=x$.

Figure A1

[^0]Example $2 \quad$ Figure 3 shows the slope field for

$$
\frac{d y}{d x}=1
$$

which consists of line segments of slope 1 . Figure 2 shows the graphs of seven solutions of the differential equation. Find a formula for all solutions.

FIGURE 3

FIGURE 4

Answer: The solutions are $y=x+C$ with arbitrary constants C. (Their graphs are lines of slope 1.)
Example 3
Figure 5 shows the slope field for

$$
\frac{d y}{d x}=x
$$

(a) Use the differential equation to explain how the slopes depend on the values of x and y. (b) Figure 6 shows the graphs of six solutions. Find a formula for all solutions.

FIGURE 5

FIGURE 6

Answer: (a) The lines in each vertical column of Figure 5, where x is constant, are parallel because there is no y on the right side of the differential equation. - The lines are horizontal along the y-axis, where $x=0$, have positive slope to the right of the y-axis, where x is positive, have negative slope to the left of the y-axis, where x is negative, and get steeper as x moves away from 0 in either direction.
(b) The solutions are $y=\frac{1}{2} x^{2}+C$ with arbitrary constants C. (Their graphs are parabolas.)

Example 4 The slope field for $\frac{d y}{d x}=h(x, y)$ is in Figure 7. Draw the approximate graphs of the solutions with the initial values (a) $y(0)=1$ and (b) $y(0)=4$.

FIGURE 7

Answer: Figure A4

Figure A4

Example 5 Draw the approximate graph of the solution of the initial-value problem

$$
\frac{d y}{d x}=K(x, y), y(0)=2 . \text { The slope field for the differential equation is in Figure } 8
$$

Answer: Figure A5

Figure A5

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ a ashenk/: \ddagger Section 9.1: Example 4

[^1]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 11.2 of Calculus by Hughes-Hallett et al

[^1]: \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

