Math 10B. Lecture Examples.

Section 11.3. Euler's method ${ }^{\dagger}$

Example 1 Figure 1 shows the slope field for the differential equation,

$$
\frac{d y}{d x}=(1-x) y
$$

Draw the graph of approximate solution $y=y_{E}(x)$ for $0 \leq x \leq 4$ with the initial value $y(0)=1$ that is obtained by Euler's method with the partition, $0<1<2<3<4$.

Answer: Figure A1a - (Figure A1b shows the graph of the exact solution $y=y(x)$ with the Euler approximation.)

[^0]Example 2 Use Euler's method with four subintervals to find the values at the partition points of an approximate solution of $\frac{d y}{d x}=\frac{(1-x) y}{x}, y(1)=3,1 \leq x \leq 5$. Then draw its graph Answer: $y_{E}(1)=3 \bullet y_{E}(2)=1.5 \bullet y_{E}(4)=0.5 \bullet y_{E}(5)=0.125 \bullet$ Figure A2

Figure A2

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ ashenk/: \ddagger Section 9.4: Example 1

[^1]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 11.3 of Calculus by Hughes-Hallett et al.

[^1]: \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

