Math 10B. Lecture Examples.

Section 11.4. Separation of variables[†]

Example 1 Figure 1 shows the slope field of the differential equation

$$\frac{dy}{dx} = y$$

and Figure 2 shows the graphs of eight solutions. (a) Use the differential equation to explain the pattern of the slope lines. (b) Find an equation for all solutions.

FIGURE 1

FIGURE 2

Answer: (a) One description and explanation: The lines in the slope field of $\frac{dy}{dx} = y$ in Figure 1 have the same slope along each horizontal line because the formula on the right does not involve x. • The lines are horizontal along the x-axis where y = 0, have positive slopes above the x-axis where y > 0, and have negative slopes below the x-axis where y < 0, and they become steeper as y increases through positive values or decreases through negative values.

(b) The solutions are $y = Ce^x$ with arbitrary constants C.

Example 2 Find the solution of the initial-value problem $\frac{dy}{dx} = 2y \cos x, y(0) = 4.$

Answer: $y = 4e^{2 \sin x}$

Example 3 Check the result of Example 2.

Answer: Set $y = 4e^{2 \sin x}$. • $y(0) = 4e^{2 \sin(0)} = 4$ • The initial condition is satisfied. •

$$\frac{dy}{dx} = \frac{d}{dx}(4e^{2\sin x}) = 8(\cos x)e^{2\sin x} = 2y\cos x \quad \bullet \quad \text{The differential equation is satisfied}$$

Example 4 Find the solutions of the differential equation

$$\frac{dy}{dx} = -2xy^2$$

with the initial conditions (a) $y(0) = 1 \bullet y(0) = -\frac{1}{4}$.

Answer: (a) $y = \frac{1}{x^2 + 1}$ (b) $y = \frac{1}{x^2 - 4}$ • (Figure A4a shows the slope field for the differential equation (6), and Figure A4b gives the graphs of the solutions.)

(9/8/08)

 $^{^\}dagger {\rm Lecture}$ notes to accompany Section 11.4 of Calculus by Hughes-Hallett et al

- **Example 5** Solve the initial-value problem $K'(x) = \sqrt{xK(x)}, K(1) =$ Answer: $K = (\frac{1}{3}x^{3/2} + \frac{2}{3})^2$
- **Example 6** Find all nonzero solutions of $\frac{dQ}{dx} = -3Q^{1/4}$.

Answer:
$$Q = (C - \frac{9}{4}x)^{4/3}$$

Example 6 (a) A two-gram object is moving on an *s*-axis with distances measured in centimeters. Its velocity in the positive direction is 1 centimeter per second at time t = 0 (seconds) and the force on it at time t > 0 is $4tv^2$ dynes in the positive *s*-direction if its velocity is *v* centimeters per second at that time. Give an initial-value problem satisfied by v = v(t). (b) Give a formula for *v* for $t \ge 0$. (c) What happens to the velocity as $t \to \infty$? (The slope field and graph of the solution are in Figure 3.)

FIGURE 3

Answer: (a) Initial-value problem: $\frac{dv}{dt} = 2tv^2, v(0) = 1$ (b) $v = \frac{1}{1-t^2}$ (c) $v \to \infty$ as $t \to 1^-$

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http://www.math.ucsd.edu/~ashenk/:[‡] Section 9.1: Examples 1–3, 5, 6, 8

 $[\]ddagger$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.