Math 10B. Lecture Examples.

Section 11.4. Separation of variables ${ }^{\dagger}$

Example 1 Figure 1 shows the slope field of the differential equation

$$
\frac{d y}{d x}=y
$$

and Figure 2 shows the graphs of eight solutions. (a) Use the differential equation to explain the pattern of the slope lines. (b) Find an equation for all solutions.

FIGURE 1

FIGURE 2

Answer: (a) One description and explanation: The lines in the slope field of $\frac{d y}{d x}=y$ in Figure 1 have the same slope along each horizontal line because the formula on the right does not involve x. - The lines are horizontal along the x-axis where $y=0$, have positive slopes above the x-axis where $y>0$, and have negative slopes below the x-axis where $y<0$, and they become steeper as y increases through positive values or decreases through negative values.
(b) The solutions are $y=C e^{x}$ with arbitrary constants C.

Example $2 \quad$ Find the solution of the initial-value problem $\frac{d y}{d x}=2 y \cos x, y(0)=4$.
Answer: $y=4 e^{2 \sin x}$
Example $3 \quad$ Check the result of Example 2.
Answer: Set $y=4 e^{2 \sin x}$. $\quad y(0)=4 e^{2 \sin (0)}=4$ - The initial condition is satisfied. \bullet
$\frac{d y}{d x}=\frac{d}{d x}\left(4 e^{2 \sin x}\right)=8(\cos x) e^{2 \sin x}=2 y \cos x \quad$ - The differential equation is satisfied.
Example 4 Find the solutions of the differential equation

$$
\frac{d y}{d x}=-2 x y^{2}
$$

with the initial conditions (a) $y(0)=1 \bullet y(0)=-\frac{1}{4}$.
Answer: (a) $y=\frac{1}{x^{2}+1}$ (b) $y=\frac{1}{x^{2}-4}$ • (Figure A4a shows the slope field for the differential equation
(6), and Figure A4b gives the graphs of the solutions.)

[^0]

Slope field of $\frac{d y}{d x}=-2 x y^{2}$

Solutions with $y(0)=1$ and $y(0)=-\frac{1}{4}$

Figure A4a
Example $5 \quad$ Solve the initial-value problem $K^{\prime}(x)=\sqrt{x K(x)}, K(1)=1$
Answer: $K=\left(\frac{1}{3} x^{3 / 2}+\frac{2}{3}\right)^{2}$
Example $6 \quad$ Find all nonzero solutions of $\frac{d Q}{d x}=-3 Q^{1 / 4}$.
Answer: $Q=\left(C-\frac{9}{4} x\right)^{4 / 3}$

Example 6

(a) A two-gram object is moving on an s-axis with distances measured in centimeters. Its velocity in the positive direction is 1 centimeter per second at time $t=0$ (seconds) and the force on it at time $t>0$ is $4 t v^{2}$ dynes in the positive s-direction if its velocity is v centimeters per second at that time. Give an initial-value problem satisfied by $v=v(t)$. (b) Give a formula for v for $t \geq 0$. (c) What happens to the velocity as $t \rightarrow \infty$? (The slope field and graph of the solution are in Figure 3.)

FIGURE 3

Answer: (a) Initial-value problem: $\frac{d v}{d t}=2 t v^{2}, v(0)=1$ (b) $v=\frac{1}{1-t^{2}}$ (c) $v \rightarrow \infty$ as $t \rightarrow 1^{-}$

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ ashenk/: \ddagger
Section 9.1: Examples 1-3, 5, 6, 8

[^1]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 11.4 of Calculus by Hughes-Hallett et al

[^1]: \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

