Math 10B. Lecture Examples.

Section 5.2. The definite integral ${ }^{\dagger}$

Example $1 \quad$ Use the formula for the area of a triangle to evaluate $\int_{-3}^{3}(x+1) d x$.

$$
\text { Answer: Figure A1 • } \int_{-3}^{3}(x+1) d x=6
$$

FIigure A1

Example $2 \quad$ Calculate the right Riemann sum for $\int_{0}^{1} x^{2} d x$ corresponding to the partition of $[0,1]$ into five equal subintervals. Draw the curve $y=x^{2}$ with the rectangles whose areas give the Riemann sum.
Answer: Figure A2 • [Right Riemann sum $]=0.44$

Figure A2

[^0]Example 3 Use the fact that the curve $y=\sqrt{16-x^{2}}$ is the upper half of the circle $x^{2}+y^{2}=16$ of radius 4 to find the exact value of $\int_{-4}^{0} \sqrt{16-x^{2}} d x$.
Answer: Figure A3 • $\int_{-4}^{0} \sqrt{16-x^{2}} d x=4 \pi$

Figure A3

Example 4 Use five rectangles of equal width to find the approximate value of $\int_{0}^{50} H(x) d x$ for the function $y=H(x)$ of Figure 1.

Answer: One answer: Figure A4 $\bullet \int_{0}^{50} H(x) d x \approx(5+7+2.5-5+4)(10)=135$

Figure A4

Interactive Examples

Work the following Interactive Examples on Shenk’s web page, http//www.math.ucsd.edu/~ashenk/: \ddagger
Section 6.2: 1-4

[^1]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 5.2 of Calculus by Hughes-Hallett et al.

[^1]: \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

