Math 10B. Lecture Examples.

Section 5.3. The Fundamental Theorem and interpretations ${ }^{\dagger}$

Example 1
What is the value of $\int_{0}^{2} F^{\prime}(x) d x$ if $F(x)=x^{4}+5$?
Answer: $\int_{0}^{2} F^{\prime}(x) d x=16$
Example 2 Figure 1 shows the graph of the continuous derivative $r=G^{\prime}(x)$ of a continuous function $y=G(x)$. Region A in the drawing has area 89 and region B has area 62 . What is $G(6)-G(1)$?

FIGURE 1

Answer: $G(6)-G(1)=27$
Example 3 A tank contains 100 gallons of water at $t=0$ (minutes) and water is added at the rate of 20 t gallons per minute at time t for $0 \leq t \leq 4$. How much water is in the tank at $t=4 ?$
Answer: Figure A3 - The tank has 260 gallons of water in it at $t=4$

Figure A3

[^0]Example 4 An object moving on an s-axis with coordinates given in feet is at $\mathrm{s}=10$ at time $t=1$. The graph of its velocity $v(t)=s^{\prime}(t)$ in the positive s-direction is shown in Figure 2. The area of region A in the drawing is 16.5 and the area of region B is 6.75 . Where is the object at $t=4$?

FIGURE 2

Answer: $s(4)=19.75$
Example $5 \quad$ The table below lists the rate $\mathrm{r}=\mathrm{r}(\mathrm{t})$ at which residents of the U.S. spent money on commodities and services, as measured on January 1 every other year just before and during the Great Depression. Give an estimate of the total spent from the beginning of 1929 to the beginning of 1939

Rate of spending (billion dollars per year)

t	1929	1931	1933	1935	1937	1939
$\mathrm{r}(\mathrm{t})$	77.2	60.5	45.8	55.7	66.5	72.0

Answer: [Total spent from the beginning of 1929 to the beginning of 1939] $=\int_{1929}^{1939} r(t) d t \approx 611.4$ billion dollars with a left Riemann sum (Figure A5a) or ≈ 601 billion dollars with a right Riemann sum (Figure A5b)

Figure A5a

Figure A5b

Example $6 \quad$ Figure 3 shows the graph of blood pressure $p=p(t)$ at the opening of the aorta leading from a person's heart during about two and a half heart beats. The person's heart beats once every 0.8 seconds, so $p=p(t)$ is periodic of period 0.8 seconds. Estimate the person's average blood pressure during one period.

FIGURE 3

Answer: Figure A6 • The average blood pressure is about 100 millimeters of mercury.

Figure A6

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ a ashenk/: \ddagger
Section 6.3: Examples 1-4
Section 6.6: Example 1
Section 7.7: Example 2

[^1]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 5.3 of Calculus by Hughes-Hallett et al.

[^1]: \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

