Math 10B. Lecture Examples.

Section 6.2. Constructing antiderivatives analytically^{\dagger}

Example 1 (a) Find the antiderivative $\int \left(3\sqrt{x} + \frac{4}{x^2} - 3\right) dx$. (b) Check the answer by differentiation. Answer: (a) $\int \left(3\sqrt{x} + \frac{4}{x^2} - 3\right) dx = 2x^{3/2} - 4x^{-1} - 3x + C$ (b) $\frac{d}{dx}(2x^{3/2} - 4x^{-1} - 3x) = 3\sqrt{x} + \frac{4}{x^2} - 3$ Example 2 What is the value of the integral $\int_{-1}^{1} x^2 dx$?

Answer:
$$\int_{-1}^{1} x^2 dx = \frac{2}{3}$$

Evaluate $\int_{-1}^{2} (4x^{1/3} + 6x^{-2}) dx$.

Example 3

$$J\mathbf{1}$$
Answer: $\int_{1}^{2} (4x^{1/3} + 6x^{-2}) dx = 3(2^{4/3})$

Example 4 Find the area of the region bounded by the curve $y = 3x^2 - x^3$ and the x-axis.

Answer: Figure A3 • [Area] = $\frac{27}{4}$

Figure A3

Answer: The temperature at t = 2 is 66° F

 $^{^\}dagger {\rm Lecture}$ notes to accompany Section 6.2 of Calculus by Hughes-Hallett et al.

Example 6 Find the area of the region bounded by $y = x^2$ and y = 2x. Answer: Figure A5. [Area] = $\frac{4}{3}$

Figure A5

- Example 7 Find the area of the region bounded by $y = \sin x$ and y = 2 for $0 \le x \le \frac{1}{2}\pi$. Answer: [Area] = $\pi - 1$
- Example 8 Evaluate $\int_{2}^{5} \frac{1}{x} dx$ and $\int_{-5}^{-2} \frac{1}{x} dx$. Answer: $\int_{2}^{5} \frac{1}{x} dx = \ln(5) - \ln(2)$ • $\int_{-5}^{-2} \frac{1}{x} dx = \ln(2) - \ln(5)$
- Example 8 Find a formula for the function y = g(x) such that $g'(x) = e^x$ for all x and g(2) = 10. Answer: $g(x) = e^x + 10 - e^2$

Answer: The car is $5\sin(3) - 8\cos(3) + 218 \doteq 226.63$ miles north of the town at t = 3.

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http://www.math.ucsd.edu/~ashenk/:[‡]

Section 6.5: 1–4

Section 6.7: 1–3, 8, and 9

Section 7.1: 1 and 2 $\,$

Section 7.7: 1 and 3

 $[\]ddagger$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.