Math 10B. Lecture Examples.

Section 6.2. Constructing antiderivatives analytically ${ }^{\dagger}$

Example 1
(a) Find the antiderivative $\int\left(3 \sqrt{x}+\frac{4}{x^{2}}-3\right) d x$.
(b) Check the answer by differentiation.

Answer: (a) $\int\left(3 \sqrt{x}+\frac{4}{x^{2}}-3\right) d x==2 x^{3 / 2}-4 x^{-1}-3 x+C$
(b) $\frac{d}{d x}\left(2 x^{3 / 2}-4 x^{-1}-3 x\right)=3 \sqrt{x}+\frac{4}{x^{2}}-3$

Example 2
What is the value of the integral $\int_{-1}^{1} x^{2} d x ?$
Answer: $\int_{-1}^{1} x^{2} d x=\frac{2}{3}$
Example 3 Evaluate $\int_{1}^{2}\left(4 x^{1 / 3}+6 x^{-2}\right) d x$.
Answer: $\int_{1}^{2}\left(4 x^{1 / 3}+6 x^{-2}\right) d x=3\left(2^{4 / 3}\right)$
Example $4 \quad$ Find the area of the region bounded by the curve $y=3 x^{2}-x^{3}$ and the x -axis.
Answer: Figure A3 $\bullet[$ Area $]=\frac{27}{4}$

Figure A3

Example $5 \quad$ Suppose that the temperature in a room is $50^{\circ} \mathrm{F}$ at time $\mathrm{t}=0$ (hours) and that the rate of change of the temperature is $r=12 t^{2}-4 t^{3}$ degrees per hour at time t for $0 \leq t \leq 2$. What is the temperature at $t=2$?
Answer: The temperature at $t=2$ is $66^{\circ} \mathrm{F}$

[^0]Example $6 \quad$ Find the area of the region bounded by $y=x^{2}$ and $y=2 x$. Answer: Figure A5. [Area] $=\frac{4}{3}$

Figure A5

Example $7 \quad$ Find the area of the region bounded by $y=\sin x$ and $y=2$ for $0 \leq x \leq \frac{1}{2} \pi$. Answer: $[$ Area $]=\pi-1$
Example 8 Evaluate $\int_{2}^{5} \frac{1}{\mathrm{x}} \mathrm{dx}$ and $\int_{-5}^{-2} \frac{1}{\mathrm{x}} \mathrm{dx}$.

$$
\text { Answer: } \int_{2}^{5} \frac{1}{x} d x=\ln (5)-\ln (2) \bullet \int_{-5}^{-2} \frac{1}{x} d x=\ln (2)-\ln (5)
$$

Example $8 \quad$ Find a formula for the function $y=g(x)$ such that $g^{\prime}(x)=e^{x}$ for all x and $\mathrm{g}(2)=10$.
Answer: $g(x)=e^{x}+10-e^{2}$
Example $9 \quad$ A car is 30 miles north of a town at time $t=0$ (hours) and its velocity toward the north is $v(t)=60+5 \cos t+8 \sin t$ miles per hour for $0 \leq t \leq 3$. Where is it at $t=3 ?$
Answer: The car is $5 \sin (3)-8 \cos (3)+218 \doteq 226.63$ miles north of the town at $t=3$.

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ a ashenk/: \ddagger
Section 6.5: 1-4
Section 6.7: 1-3, 8, and 9
Section 7.1: 1 and 2
Section 7.7: 1 and 3

[^1]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 6.2 of Calculus by Hughes-Hallett et al.

[^1]: \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

