## Math 10B. Lecture Examples.

## Section 7.1. Integration by substitution<sup>†</sup>

Example 1 Find the antiderivative  $\int (x^2 + 1)^5 (2x) dx$ .

**Answer:** 
$$\int (x^2 + 1)^5 (2x) \ dx = \frac{1}{6} (x^2 + 1)^6 + C$$

Example 2 Perform the integration  $\int x^3 \sqrt{x^4 + 16} \, dx$ .

**Answer:** 
$$\int x^3 \sqrt{x^4 + 16} \ dx = \frac{1}{6} (x^4 + 16)^{3/2} + C$$

Example 3 Find the antiderivative  $\int \frac{\cos(\sqrt{x})}{\sqrt{x}} dx$ .

Answer: 
$$\int \frac{\cos(\sqrt{x})}{\sqrt{x}} dx = 2\sin(\sqrt{x}) + C$$

Example 4 Find the area of the region in Figure 1.



FIGURE 1

**Answer:** [Area] = 
$$\frac{9}{2}$$

Example 5 Evaluate  $\int_0^1 \sin(\pi x) dx$ .

**Answer:** 
$$\int_0^1 \sin(\pi x) \ dx = \frac{2}{\pi}$$

Example 6 Evaluate  $\int_0^1 e^{-2x} dx$ .

**Answer:** 
$$\int_0^1 e^{-2x} dx = \frac{1}{2}(1 - e^{-2})$$

## Interactive Examples

Work the following Interactive Examples on Shenk's web page, http://www.math.ucsd.edu/~ashenk/:

Section 6.8: Examples 1 through 5

Section 7.1: Example 4

<sup>&</sup>lt;sup>†</sup>Lecture notes to accompany Section 7.1 of Calculus by Hughes-Hallett et al.

<sup>&</sup>lt;sup>‡</sup>The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.