## Math 10B. Lecture Examples.

## Section 7.2. Integration by parts ${ }^{\dagger}$

Example 1 (a) Find the antiderivative $\int x \cos x d x$. (b) Check the result by differentiation.
Answer: (a) $\int x \cos x d x=x \sin x+\cos x+C$ (b) Product Rule: $\frac{d}{d x}(x \sin x+\cos x)=x \cos x$.
Example $2 \quad$ What is the area of the region between $y=x e^{-x}$ and the $x$-axis for $\mathbf{0} \leq \mathrm{x} \leq \mathbf{4}$ ?
Answer: Figure A2 • [Area] $=1-5 e^{-4}$

Figure A2


Example $3 \quad$ Find the antiderivative $\int \mathrm{x}^{3} \ln \mathrm{x} d \mathrm{x}$.
Answer: (a) $\int x^{3} \ln x d x=\frac{1}{4} x^{4} \ln x-\frac{1}{16} x^{4}+C$
Example $4 \quad$ Evaluate $\int_{1}^{5} \ln (2 x) d x$.
Answer: $\int_{1}^{5} \ln (2 x) d x=5 \ln (10)-\ln (2)-4$
Example $5 \quad$ Find the indefinite integral $\int \frac{(\ln x)^{4}}{x} d x$.

$$
\text { Answer: } \int \frac{(\ln x)^{4}}{x} d x=\frac{1}{5}(\ln x)^{5}+C
$$

## Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ a ashenk/: $\ddagger$
Section 8.1: Examples 1 and 2

[^0]
[^0]:    ${ }^{\dagger}$ Lecture notes to accompany Section 7.2 of Calculus by Hughes-Hallett et al.
    $\ddagger$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

