Math 10B. Lecture Examples.

Section 7.2. Integration by parts^{\dagger}

Example 1 (a) Find the antiderivative $\int x \cos x \, dx$. (b) Check the result by differentiation.

Answer: (a) $\int x \cos x \, dx = x \sin x + \cos x + C$ (b) Product Rule: $\frac{d}{dx}(x \sin x + \cos x) = x \cos x$.

Example 2 What is the area of the region between $y = xe^{-x}$ and the x-axis for $0 \le x \le 4$?

Answer: Figure A2 • [Area] = $1 - 5e^{-4}$

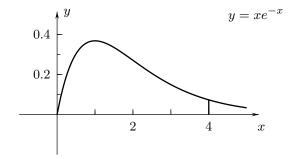


Figure A2

Example 3 Find the antiderivative
$$\int \mathbf{x}^3 \ln \mathbf{x} \, d\mathbf{x}$$
.
Answer: (a) $\int x^3 \ln x \, dx = \frac{1}{4}x^4 \ln x - \frac{1}{16}x^4 + C$
Example 4 Evaluate $\int_1^5 \ln(2\mathbf{x}) \, d\mathbf{x}$.
Answer: $\int_1^5 \ln(2x) \, dx = 5\ln(10) - \ln(2) - 4$
Example 5 Find the indefinite integral $\int \frac{(\ln \mathbf{x})^4}{\mathbf{x}} \, d\mathbf{x}$.
Answer: $\int \frac{(\ln x)^4}{x} \, dx = \frac{1}{5}(\ln x)^5 + C$

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http://www.math.ucsd.edu/~ashenk/:[‡]

Section 8.1: Examples 1 and 2

 $^{^\}dagger {\rm Lecture}$ notes to accompany Section 7.2 of Calculus by Hughes-Hallett et al.

 $^{^{\}ddagger}$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.